Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom

Author(s): Chen Ling, Yuanhui Zhang, Jun Li, Wenli Chen* and Changquan Ling*

Volume 20, Issue 3, 2019

Page: [285 - 295] Pages: 11

DOI: 10.2174/1389203719666180622100641

Price: $65

Abstract

Traditional Chinese Medicine (TCM) has been practiced in China for thousands of years. As a complementary and alternative treatment, herbal medicines that are frequently used in the TCM are the most accepted in the Western world. However, animal materials, which are equally important in the TCM practice, are not well-known in other countries. On the other hand, the Chinese doctors had documented the toxic profiles of hundreds of animals and plants thousand years ago. Furthermore, they saw the potential benefits of these materials and used their toxic properties to treat a wide variety of diseases, such as heavy pain and cancer. Since the 50s of the last century, efforts of the Chinese government and societies to modernize TCM have achieved tremendous scientific results in both laboratory and clinic. A number of toxic proteins have been isolated and their functions identified. Although most of the literature was written in Chinese, this review provide a summary, in English, regarding our knowledge of the clinical use of the toxic proteins isolated from a plant, Tian Hua Fen, and an animal, scorpion, both of which are famous toxic prescriptions in TCM.

Keywords: Toxic proteins and peptides, Traditional Chinese Medicine, clinical trials, Tian Hua Fen, scorpion venom.

[1]
Qiu, J. China plans to modernize traditional medicine. Nature, 2007, 446(7136), 590-591.
[2]
Zhao, C.Q.; Zhou, Y.; Ping, J.; Xu, L.M. Traditional Chinese medicine for treatment of liver diseases: Progress, challenges and opportunities. J. Integr. Med., 2014, 12(5), 401-408.
[3]
Wang, X.; Wang, N.; Cheung, F.; Lao, L.; Li, C.; Feng, Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: Current progress on pharmacological actions and mechanisms. J. Integr. Med., 2015, 13(3), 142-164.
[4]
He, B.; Zhang, G.; Lu, A.P. Integrative network analysis: bridging the gap between Western medicine and traditional Chinese medicine. J. Integr. Med., 2015, 13(3), 133-135.
[5]
Zhai, X.F.; Chen, Z.; Li, B.; Shen, F.; Fan, J.; Zhou, W.P.; Yang, Y.K.; Xu, J.; Qin, X.; Li, L.Q.; Ling, C.Q. Traditional herbal medicine in preventing recurrence after resection of small hepatocellular carcinoma: A multicenter randomized controlled trial. J. Integr. Med., 2013, 11(2), 90-100.
[6]
Ortiz, E.; Gurrola, G.B.; Schwartz, E.F.; Possani, L.D. Scorpion venom components as potential candidates for drug development. Toxicon, 2015, 93, 125-135.
[7]
Kudryavtsev, D.; Shelukhina, I.; Vulfius, C.; Makarieva, T.; Stonik, V.; Zhmak, M.; Ivanov, I.; Kasheverov, I.; Utkin, Y.; Tsetlin, V. Natural compounds interacting with nicotinic acetylcholine receptors: From low-molecular weight ones to peptides and proteins. Toxins (Basel), 2015, 7(5), 1683-1701.
[8]
Kuo-Fen, C. Midtrimester abortion induced by radix trichosanthis: Morphologic observations in placenta and fetus. Obstet. Gynecol., 1982, 59(4), 494-498.
[9]
Xiong, Y.; Zhang, J.; Xu, S.; Pan, P.; Wang, Y. Preliminary study on the relationship between the immunogenic inhibition by phenargen and the termination of pregnancy by trichosanthin. Dong Wu Xue Bao, 1976, 22(2), 187-191.
[10]
Yue, C.X.; Lou, Z.Q. Morphological and histological studies on the Chinese drug tien-hwa-feng(radix trichosanthis), its adulterants and substitutes. Yao Xue Xue Bao, 1979, 14(11), 641-654.
[11]
Zhou, M.H.; Li, Q.; Shu, H.D.; Bao, Y.M.; Chu, Y.H. Pharmacological study of the effect of Radix trichosanthis on terminating early pregnancy. Yao Xue Xue Bao, 1982, 17(3), 176-181.
[12]
Liu, S.; Wu, X. Primary study on safety of trichosanthin combined with reserpine and testosterone propionate for termination of early and middle stage pregnancy: A clinical report of 7754 cases. Reprod. Contracept., 1991, 11(3), 46-51.
[13]
[No authors listed]. Studies on the mechanisms of abortion induction by Trichosanthin. Sci. Sin, 1976, 19(6), 811-830.
[14]
Wang, Y.; Ling, J.; Zhu, L. Preliminary studies on purification and characterization of an abortifacient plant protein trichosanthin. Acta Zoologica Sinica, 1976, 22(02), 137-143.
[15]
Chang, M.C.; Saksena, S.K.; Lau, I.F.; Wang, Y.H. Induction of mid-term abortion by trichosanthin in laboratory animals. Contraception, 1979, 19(2), 175-184.
[16]
Saksena, S.K.; Chang, M.C.; Lau, I.F. Termination of pregnancy in rabbit and mouse by trichosanthin. Contraception, 1979, 20(4), 367-376.
[17]
Saksena, S.K.; Lau, I.F. Effects of prostaglandin-F2 alpha and a plant protein “Trichosanthin”, on 10-day pregnant rabbits. Prostaglandins Med., 1980, 5(5), 383-390.
[18]
Lau, I.F.; Saksena, S.K.; Chang, M.C. Further studies on the trichosanthin-induced termination of pregnancy. Contraception, 1980, 21(1), 77-86.
[19]
Shaw, P.C.; Chan, W.L.; Yeung, H.W.; Ng, T.B. Minireview: Trichosanthin--a protein with multiple pharmacological properties. Life Sci., 1994, 55(4), 253-262.
[20]
Wang, Y.; Zhu, R.; Huang, J.; Xu, G. Investigations on the injurious effects of the abortifatient trichosanthin to monkey placental villi. Acta Zoologica Sinica, 1976, 22(02), 156.
[21]
Wang, Y.; Xu, G.; Jiang, W. The ultrastructural observations on the injurious effects of the abortifacient trichosanthin on monkey trophoblast. Acta Biologiae Expertmentalis Sinica, 1978, 11(2), 263.
[22]
Hu, Y. 2907 cases of mid-term abortion by trichosanthin injection. Shandong Med. J., 1977, 05, 29-31.
[23]
Wang, Y.F.; Zhou, W.D.; Liu, J.X.; Fi, C.; Zhu, W.X.; Chen, Y.Z.; Yan, L.M.; Shen, G.S.; Wu, Y.E.; Zhu, W. Prostaglandin E and F2 alpha levels in plasma and amniotic fluid during mid-trimester abortion induced by trichosanthin. Prostaglandins, 1981, 22(2), 289-294.
[24]
Wang, Y.F.; Liu, J.X.; Jin, Y.C.; Peng, X.Y. Hormone profile in plasma and amniotic fluid during mid-trimester abortion induced by tricosanthin and by rivanol. Reprod. Contracept., 1982, 2(3), 15-18.
[25]
Gu, Z.F.; Wu, X.D.; Li, Y.J.; Zhang, P.Z.; Guo, X.M.; Lu, S.F. Application of trichosanthin in 179 difficult cases of artificial abortion. Reprod. Contracept., 1985, 5(1), 10-14.
[26]
Nianfeng, L.; Feng, G. Clinical observation of combination of mifepristone,misoprostol and trichosanthin in termination of pregnancy. J. Qilu Nursing (Chin), 2010, 16(7), 90-91.
[27]
Xiaocui, L.; Beifen, X.; Aihua, F. Analysis of methods of 107 cases mid-trimester pregnancy termination with lower segmant of placenta. Reprod. Contracept., 2011, 31(11), 780-785.
[28]
Jin, Y.; Zou, Y. Crystal trichosanthin protein intramuscular or intracervical injection for the termination of pregnancy at 10 to 14 weeks gestation: clinical analysis of 200 cases. Reprod. Contracept., 1990, 10(1), 34-37.
[29]
Xu, M.F.; Jin, Y.C. Clinical trial of trichosanthin with or without dexamethasone in induction of abortion by four different routes of administration. Reprod. Contracept., 1991, 11(2), 47-50.
[30]
Lu, P.X.; Jin, Y.C. Ectopic pregnancy treated with trichosanthin. Clinical analysis of 71 patients. Chin. Med. J. (Engl.), 1989, 102(5), 365-367.
[31]
Lipscomb, G.H.; Stovall, T.G.; Ling, F.W. Nonsurgical treatment of ectopic pregnancy. N. Engl. J. Med., 2000, 343(18), 1325-1329.
[32]
Egarter, C.; Husslein, P.; Yeung, H.W. Trichosanthin injection in tubal pregnancy. Gynecol. Obstet. Invest., 1991, 31(2), 119-120.
[33]
Zhong, H.P.; Lu, P.X.; Jin, Y.C. Tube pregnancy treated with trichosanthin and followed up by hysterosalpingography. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1995, 15(2), 90-91.
[34]
Xiang, D.J.; Chen, L.M.; Gu, J.S.; Stone, P.; Chen, Q. Trichosanthin, a Chinese medicine for the medical treatment of ectopic pregnancy with high levels of beta-hCG. Reprod. Sci., 2012, 19(5), 534-538.
[35]
Ding, Y. Meta-analysis of the efficacy of trichosanthin to treat ectopic pregnancy in China. Chin. J. Trad. Med. Sci. Technol, 2014, 21(01), 106.
[36]
Xue, J.; Gu, W. Clinical study of methotrexate and radix trichosanthis in treatment of tubal pregnancy with high level of blood chorionic gonadotropin. China Modern Doctor, 2014, 52(1), 38-41.
[37]
Cao, C. Intramuscular injection of trichosanthin after laparoscopic conservative surgery for preventing persistent ectopic pregnancy in 72 cases. Chin. Pharmaceut., 2014, 23(21), 85-86.
[38]
Yeung, H.W.; Li, W.W. Beta-trichosanthin: A new abortifacient protein from the Chinese drug, wangua, trichosanthes cucumeroides. Int. J. Pept. Protein Res., 1987, 29(3), 289-292.
[39]
No, T.B.; Feng, Z.; Li, W.W.; Yeung, H.W. Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of trichosanthes cucumeroides (Cucurbitaceae). Int. J. Biochem., 1987, 23(5-6), 561-567.
[40]
Ng, T.B.; Wong, R.N.; Yeung, H.W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae). Biochem. Int., 1992, 27(2), 197-207.
[41]
Jin, Y.C. Intra-amniotic injection of crystal trichosanthin for induction of labour in second trimester pregnancy. Reprod. Contracept., 1985, 5(1), 15-17.
[42]
Chan, S.H.; Hung, F.S.; Chan, D.S.; Shaw, P.C. Trichosanthin interacts with acidic ribosomal proteins P0 and P1 and mitotic checkpoint protein MAD2B. Eur. J. Biochem., 2001, 268(7), 2107-2112.
[43]
Tian, D.; Huai, J.; Xiao, X. Curative effect of trichosanthin injection for placenta accreta in 57 patients. J. Wannan Med. Coll, 2012, 31(05), 383-385.
[44]
Weimin, W.; Wenqing, L. Effect of early pregnancy on a previous lower segment cesarean section scar. Int. J. Gynaecol. Obstet., 2002, 77(3), 201-207.
[45]
Li, B.L.; Qian, W.; Chen, Q.F. Trichosanthin benefits the treatment of caesarean scar pregnancies. J. Obstet. Gynaecol., 2015, 2015, 1-5.
[46]
Sha, O.; Niu, J.; Ng, T.B.; Cho, E.Y.; Fu, X.; Jiang, W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: A mini review. Cancer Chemother. Pharmacol., 2013, 71(6), 1387-1393.
[47]
Froeling, F.E.; Seckl, M.J. Gestational trophoblastic tumours: An update for 2014. Curr. Oncol. Rep., 2014, 16(11), 408.
[48]
Huang, Y.L. Treatment of malignant trophoblastic neoplasia with trichosanthin. Zhong Xi Yi Jie He Za Zhi, 1987, 7(3), 154-155.
[49]
Law, L.K.; Tam, P.P.; Yeung, H.W. Effects of alpha-trichosanthin and alpha-momorcharin on the development of peri-implantation mouse embryos. J. Reprod. Fertil., 1983, 69(2), 597-604.
[50]
Tsao, S.W.; Yan, K.T.; Yeung, H.W. Selective killing of choriocarcinoma cells in vitro by trichosanthin, a plant protein purified from root tubers of the Chinese medicinal herb Trichosanthes kirilowii. Toxicon, 1986, 24(8), 831-840.
[51]
Lu, P.X.; Jin, Y.C. Trichosanthin in the treatment of hydatidiform mole. Clinical analysis of 52 cases. Chin. Med. J. (Engl.), 1990, 103(3), 183-185.
[52]
Chan, W.L.; Shaw, P.C.; Tam, S.C.; Jacobsen, C.; Gliemann, J.; Nielsen, M.S. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem. Biophys. Res. Commun., 2000, 270(2), 453-457.
[53]
Xia, X.; Hou, F.; Li, J.; Ke, Y.; Nie, H. Two novel proteins bind specifically to trichosanthin on choriocarcinoma cell membrane. J. Biochem., 2006, 139(4), 725-731.
[54]
Chan, W.Y.; Huang, H.; Tam, S.C. Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells. Toxicology, 2003, 186(3), 191-203.
[55]
Jiao, Y.; Liu, W. Low-density lipoprotein receptor-related protein 1 is an essential receptor for trichosanthin in 2 choriocarcinoma cell lines. Biochem. Biophys. Res. Commun., 2010, 391(4), 1579-1584.
[56]
Zhang, C.Y.; Gong, Y.X.; Ma, H.; An, C.C.; Chen, D.Y. Trichosanthin induced calcium-dependent generation of reactive oxygen species in human choriocarcinoma cells. Analyst, 2000, 125(9), 1539-1542.
[57]
Zhang, C.; Gong, Y.; Ma, H.; An, C.; Chen, D.; Chen, Z.L. Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells. Biochem. J., 2001, 355(Pt 3), 653-661.
[58]
Cui, L.; Song, J.; Wu, L.; Huang, L.; Wang, Y.; Huang, Y.; Yu, H.; Huang, Y.; You, C.C.; Ye, J. Smac is another pathway in the anti-tumour activity of Trichosanthin and reverses Trichosanthin resistance in CaSki cervical cancer cells. Biomed. Pharmacother., 2015, 69, 119-124.
[59]
Kang, M.; Ou, H.; Wang, R.; Liu, W.; Mao, Y.; Tang, A. Effect of trichosanthin on apoptosis and telomerase activity of nasopharyngeal carcinomas in nude mice. J. BUON, 2013, 18(3), 675-682.
[60]
Li, M.; Li, X.; Li, J.C. Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Anat. Rec. (Hoboken), 2010, 293(6), 986-992.
[61]
Schauer, R. Sialic acids and their role as biological masks. Trends Biochem. Sci., 1985, 10(9), 357-360.
[62]
Yeung, H.W.; Li, W.W.; Feng, Z.; Barbieri, L.; Stirpe, F. Trichosanthin, alpha-momorcharin and beta-momorcharin: Identity of abortifacient and ribosome-inactivating proteins. Int. J. Pept. Protein Res., 1988, 31(3), 265-268.
[63]
Zhang, X.J.; Wang, J.H. Homology of trichosanthin and ricin A chain. Nature, 1986, 321(6069), 477-478.
[64]
Maraganore, J.M.; Joseph, M.; Bailey, M.C. Purification and characterization of trichosanthin. Homology to the ricin A chain and implications as to mechanism of abortifacient activity. J. Biol. Chem., 1987, 262(24), 11628-11633.
[65]
Collins, E.J.; Robertus, J.D.; Lopresti, M.; Stone, K.L.; Williams, K.R.; Wu, P.; Hwang, K.; Piatak, M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J. Biol. Chem., 1990, 265(15), 8665-8669.
[66]
Zhang, J.S.; Liu, W.Y. The mechanism of action of trichosanthin on eukaryotic ribosomes--RNA N-glycosidase activity of the cytotoxin. Nucleic Acids Res., 1992, 20(6), 1271-1275.
[67]
Shaw, P.C.; Lee, K.M.; Wong, K.B. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon, 2005, 45(6), 683-689.
[68]
Mcgrath, M.S.; Hwang, K.M.; Caldwell, S.E.; Gaston, I.; Luk, K.C.; Wu, P.; Ng, V.L.; Crowe, S.; Daniels, J.; Marsh, J.; Deinhart, T.; Lekas, P.V.; Vennari, J.C.; Yeung, H.W.; Lifson, J.D. GLQ223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA, 1989, 86(8), 2844-2848.
[69]
Mcgrath, M.S.; Santulli, S.; Gaston, I. Effects of GLQ223 on HIV replication in human monocyte/macrophages chronically infected in vitro with HIV. AIDS Res. Hum. Retroviruses, 1990, 6(8), 1039-1043.
[70]
Ferrari, P.; Trabaud, M.A.; Rommain, M.; Mandine, E.; Zalisz, R.; Desgranges, C.; Smets, P. Toxicity and activity of purified trichosanthin. AIDS, 1991, 5(7), 865-870.
[71]
Abbas, W.; Tariq, M.; Iqbal, M.; Kumar, A.; Herbein, G. Eradication of HIV-1 from the macrophage reservoir: An uncertain goal? Viruses, 2015, 7(4), 1578-1598.
[72]
Kahn, J.O.; Kaplan, L.D.; Gambertoglio, J.G.; Bredesen, D.; Arri, C.J.; Turin, L.; Kibort, T.; Williams, R.L.; Lifson, J.D.; Volberding, P.A. The safety and pharmacokinetics of GLQ223 in subjects with AIDS and AIDS-related complex: A phase I study. AIDS, 1990, 4(12), 1197-1204.
[73]
Palca, J. Trials and tribulations of AIDS drug testing. Science, 1990, 247(4949 Pt 1), 1406.
[74]
Byers, V.S.; Levin, A.S.; Waites, L.A.; Starrett, B.A.; Mayer, R.A.; Clegg, J.A.; Price, M.R.; Robins, R.A.; Delaney, M.; Baldwin, R.W. A phase I/II study of trichosanthin treatment of HIV disease. AIDS, 1990, 4(12), 1189-1196.
[75]
Bayer, R. The ethics of research on HIV/AIDS in community-based settings. AIDS, 1990, 4(12), 1287-1288.
[76]
Pinching, A.J. Early trials of GLQ223/trichosanthin: What do they show? AIDS, 1990, 4(12), 1289-1291.
[77]
Byers, V.S.; Baldwin, P.W. Trichosanthin treatment of HIV disease. AIDS, 1991, 5(9), 1150-1151.
[78]
Kahn, J.O.; Gorelick, K.J.; Gatti, G.; Arri, C.J.; Lifson, J.D.; Gambertoglio, J.G.; Bostrom, A.; Williams, R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob. Agents Chemother., 1994, 38(2), 260-267.
[79]
Byers, V.S.; Levin, A.S.; Malvino, A.; Waites, L.; Robins, R.A.; Baldwin, R.W. A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res. Hum. Retroviruses, 1994, 10(4), 413-420.
[80]
Ko, W.H.; Wong, C.C.; Yeung, H.W.; Tam, S.C. Modulation of trichosanthin antigenicity by coupling to dextran. Biochem. Int., 1992, 28(4), 643-650.
[81]
Chan, W.L.; Shaw, P.C.; Li, X.B.; Xu, Q.F.; He, X.H.; Tam, S.C. Lowering of trichosanthin immunogenicity by site-specific coupling to dextran. Biochem. Pharmacol., 1999, 57(8), 927-934.
[82]
Zhang, X.Y.; Wu, Y.; Yan, J.Y.; Gao, Y.; Wang, Y.; Mi, S.L.; An, C.C. Y55 and D78 are crucial amino acid residues of a new IgE epitope on trichosanthin. Biochem. Biophys. Res. Commun., 2006, 343(4), 1251-1256.
[83]
An, Q.; Wei, S.; Mu, S.; Zhang, X.; Lei, Y.; Zhang, W.; Jia, N.; Cheng, X.; Fan, A.; Li, Z.; Xu, Z. Mapping the antigenic determinants and reducing the immunogenicity of trichosanthin by site-directed mutagenesis. J. Biomed. Sci., 2006, 13(5), 637-643.
[84]
He, X.H.; Shaw, P.C.; Tam, S.C. Reducing the immunogenicity and improving the in vivo activity of trichosanthin by site-directed pegylation. Life Sci., 1999, 65(4), 355-368.
[85]
Wang, J.H.; Tam, S.C.; Huang, H.; Ouyang, D.Y.; Wang, Y.Y.; Zheng, Y.T. Site-directed PEGylation of trichosanthin retained its anti-HIV activity with reduced potency in vitro. Biochem. Biophys. Res. Commun., 2004, 317(4), 965-971.
[86]
An, Q.; Lei, Y.; Jia, N.; Zhang, X.; Bai, Y.; Yi, J.; Chen, R.; Xia, A.; Yang, J.; Wei, S.; Cheng, X.; Fan, A.; Mu, S.; Xu, Z. Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomol. Eng., 2007, 24(6), 643-649.
[87]
An, Q.X.; Lei, Y.F.; Mu, S.J.; Zhang, X.Q.; Chen, R.; Xia, A.J.; Chen, C.; Yi, J.; Wu, Y.R.; Yu, R.; Xu, Z.K. A comparative study on the properties of trichosanthin before and after site-directed PEGylation. Zhonghua Yi Xue Za Zhi, 2008, 88(20), 1433-1436.
[88]
Fang, E.F.; Ng, T.B.; Shaw, P.C.; Wong, R.N. Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus Trichosanthes. Curr. Med. Chem., 2011, 18(28), 4410-4417.
[89]
Zhang, Y.H.; Wang, Y.; Yusufali, A.H.; Ashby, F.; Zhang, D.; Yin, Z.F.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J. Integr. Med., 2014, 12(6), 483-494.
[90]
Nathwani, A.C.; Tuddenham, E.G.; Rangarajan, S.; Rosales, C.; Mcintosh, J.; Linch, D.C.; Chowdary, P.; Riddell, A.; Pie, A.J.; Harrington, C.; O’Beirne, J.; Smith, K.; Pasi, J.; Glader, B.; Rustagi, P.; Ng, C.Y.; Kay, M.A.; Zhou, J.; Spence, Y.; Morton, C.L.; Allay, J.; Coleman, J.; Sleep, S.; Cunningham, J.M.; Srivastava, D.; Basner-Tschakarjan, E.; Mingozzi, F.; High, K.A.; Gray, J.T.; Reiss, U.M.; Nienhuis, A.W.; Davidoff, A.M. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med., 2011, 365(25), 2357-2365.
[91]
Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.; Rosales, C.; Chowdary, P.; Mcintosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; Riddell, A.; Pie, J.; Rangarajan, S.; Bevan, D.; Recht, M.; Shen, Y.M.; Halka, K.G.; Basner-Tschakarjan, E.; Mingozzi, F.; High, K.A.; Allay, J.; Kay, M.A.; Ng, C.Y.; Zhou, J.; Cancio, M.; Morton, C.L.; Gray, J.T.; Srivastava, D.; Nienhuis, A.W.; Davidoff, A.M. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med., 2014, 371(21), 1994-2004.
[92]
Wang, J.H.; Nie, H.L.; Tam, S.C.; Huang, H.; Zheng, Y.T. Anti-HIV-1 property of trichosanthin correlates with its ribosome inactivating activity. FEBS Lett., 2002, 531(2), 295-298.
[93]
Wang, J.H.; Nie, H.L.; Huang, H.; Tam, S.C.; Zheng, Y.T. Independency of anti-HIV-1 activity from ribosome-inactivating activity of trichosanthin. Biochem. Biophys. Res. Commun., 2003, 302(1), 89-94.
[94]
Zhao, J.; Ben, L.H.; Wu, Y.L.; Hu, W.; Ling, K.; Xin, S.M.; Nie, H.L.; Ma, L.; Pei, G. Anti-HIV agent trichosanthin enhances the capabilities of chemokines to stimulate chemotaxis and G protein activation, and this is mediated through interaction of trichosanthin and chemokine receptors. J. Exp. Med., 1999, 190(1), 101-111.
[95]
Parikh, B.A.; Tumer, N.E. Antiviral activity of ribosome inactivating proteins in medicine. Mini Rev. Med. Chem., 2004, 4(5), 523-543.
[96]
Zhao, W.L.; Feng, D.; Wu, J.; Sui, S.F. Trichosanthin inhibits integration of human immunodeficiency virus type 1 through depurinating the long-terminal repeats. Mol. Biol. Rep., 2010, 37(4), 2093-2098.
[97]
Zhao, W.; Feng, D.; Sun, S.; Han, T.; Sui, S. The anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(2), 91-97.
[98]
Mo, X.; Xuan, L.; Bi, Y.; Du, F. Clinical study on treatment for migraine with hyperactivity of liver wind with blood stasis by calming the internal wind and resolving blood stasis. Chin. Arch. Trad. Chin. Med, 2013, 31(4), 862-865.
[99]
Zhou, X.H.; Yang, D.; Zhang, J.H.; Liu, C.M.; Lei, K.J. Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem. J., 1989, 257(2), 509-517.
[100]
Zeh, D.W. The Biology of Scorpions Gary, A. Polis, Ed. Stanford University Press, Stanford, CA, 1990. xxvi, 587 pp., illus. $85. Science, , 1990. 249(4973), 1176-1177
[101]
Shuang-Wei, W.; Tao, C. 58 cases of trigeminal neuralgia treated with qiong xie decoction. N. J. Trad. Chin. Med. (China), 2003, 24(9), 790.
[102]
Qi-Jun, W. Clinical observation of scorpion treating postherpetic neuralgia. Lishizhen Med. Materia Medica Res. (China), 2003, 14(5), 283-284.
[103]
Ge-Ping, Y.; Jian, L. 80 cases of intractable headache treated with qiong xie san tong decoction. N. J. Trad. Chin. Med. (China), 2003, 35(5), 60.
[104]
Zhen-Guang, L.; Jing-Jing, W. Clinical observation of 78 cases of migraine treated with chuan xie fang tong decoction. Chin. J. Ethnomed. Ethnopharm, 2009, 18(15), 116-118.
[105]
Jian-Qiang, J. Observation of clinical effect of intractable headache and rheumatism treated with qiang ju wu xie decoction. J. Clin. Med. Literature, 2014, 1(18), 2674.
[106]
Yu-Dong, X.; Hao, W.; Xiao-Fen, Y. 140 cases of postherpetic neuralgia treated with scorpion in combination with acupuncture. Hebei J. Trad. Chin. Med., 2001, 23(7), 487.
[107]
Ge-Guang, S. Clinical observation of acupuncture treating postherpetic neuralgia in combination with scorpion. Xinjiang J. Trad. Chin. Med., 2002, 20(6), 36-37.
[108]
Ruide, Z.; Jinghong, C.; Xiaoling, M.; Huan, W.; Suzhen, L.; Xufeng, C.; Guoxi, T. Analgesic effect of scorpion venom (Buthus martensii karsch liaoning) on visceral pain in cats. J. Chin. Med. Univ, 1998, 27(1), 12-15.
[109]
Yi-Zheng, P.; Ye-Lei, T. Scorpion venom injection for treatment of neuralgia. Chin. J. New Drugs Clin. Remedies, 2000, 19(3), 172-175.
[110]
Xiao-Heng, S.; Jian-Zhong, X.; Wei-Rong, Z. Scorpion venom injection for treatment of cancer pain. Chin. Oncol., 2001, 11(3), 200-204.
[111]
Liuming, Y.; Rui, Z.; Hua, W.; Wenying, Z.; Zhuoying, C.; Yanlong, Z.; Ling, H.; Tianhan, K. Clinical effects of bitongling capsule on pain relief. J. Henan Med. Univ., 2001, 36(6), 669-670.
[112]
Yanping, D.; Guozhu, X.; Wei, W.; Xiaoheng, S.; Qingtang, C.; Huizhen, G.; Yizheng, P.; Tianyue, Z.; Duming, Z.; Xianmei, Z.; Yali, L.; Zhiji, C. Clinical evaluation of analgesic effect and safety of scorpion venom injection. Chin. Pharmaceut. J, 2002, 37(6), 459-462.
[113]
Almaaytah, A.; Albalas, Q. Scorpion venom peptides with no disulfide bridges: A review. Peptides, 2014, 51, 35-45.
[114]
Possani, L.D.; Becerril, B.; Delepierre, M.; Tytgat, J. Scorpion toxins specific for Na+-channels. Eur. J. Biochem., 1999, 264(2), 287-300.
[115]
Liu, Y.F.; Hu, J.; Zhang, J.H.; Wang, S.L.; Wu, C.F. Isolation, purification, and N-terminal partial sequence of an antitumor peptide from the venom of the Chinese scorpion Buthus martensii Karsch. Prep. Biochem. Biotechnol., 2002, 32(4), 317-327.
[116]
Carbone, E.; Wanke, E.; Prestipino, G.; Possani, L.D.; Maelicke, A. Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature, 1982, 296(5852), 90-91.
[117]
Hoang, A.N.; Vo, H.D.; Vo, N.P.; Kudryashova, K.S.; Nekrasova, O.V.; Feofanov, A.V.; Kirpichnikov, M.P.; Andreeva, T.V.; Serebryakova, M.V.; Tsetlin, V.I.; Utkin, Y.N. Vietnamese Heterometrus laoticus scorpion venom: Evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon, 2014, 77, 40-48.
[118]
Xiong, Y.M.; Lan, Z.D.; Wang, M.; Liu, B.; Liu, X.Q.; Fei, H.; Xu, L.G.; Xia, Q.C.; Wang, C.G.; Wang, D.C.; Chi, C.W. Molecular characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsch. Toxicon, 1999, 37(8), 1165-1180.
[119]
Shao, J.; Kang, N.; Liu, Y.; Song, S.; Wu, C.; Zhang, J. Purification and characterization of an analgesic peptide from Buthus martensii Karsch. Biomed. Chromatogr., 2007, 21(12), 1266-1271.
[120]
Liu, Y.F.; Ma, R.L.; Wang, S.L.; Duan, Z.Y.; Zhang, J.H.; Wu, L.J.; Wu, C.F. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr. Purif., 2003, 27(2), 253-258.
[121]
Shao, J.; Cui, Y.; Zhao, M.; Wu, C.; Liu, Y.; Zhang, J. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides, 2014, 53, 89-96.
[122]
Liu, Y.F.; Hu, J.; Zhang, J.H.; Wang, S.L.; Wu, C.F. Isolation, purification, and N-terminal partial sequence of an antitumor peptide from the venom of the Chinese scorpion Buthus martensii Karsch. Prep. Biochem. Biotechnol., 2002, 32(4), 317-327.
[123]
Lai, L.; Huang, T.; Wang, Y.; Liu, Y.; Zhang, J.; Song, Y. The expression of analgesic-antitumor peptide (AGAP) from Chinese Buthus martensii Karsch in transgenic tobacco and tomato. Mol. Biol. Rep., 2009, 36(5), 1033-1039.
[124]
Cao, P.; Yu, J.; Lu, W.; Cai, X.; Wang, Z.; Gu, Z.; Zhang, J.; Ye, T.; Wang, M. Expression and purification of an antitumor-analgesic peptide from the venom of Mesobuthus martensii Karsch by small ubiquitin-related modifier fusion in Escherichia coli. Biotechnol. Prog., 2010, 26(5), 1240-1244.
[125]
Ma, R.; Cui, Y.; Zhou, Y.; Bao, Y.M.; Yang, W.Y.; Liu, Y.F.; Wu, C.F.; Zhang, J.H. Location of the analgesic domain in Scorpion toxin BmK AGAP by mutagenesis of disulfide bridges. Biochem. Biophys. Res. Commun., 2010, 394(2), 330-334.
[126]
Cui, Y.; Guo, G.L.; Ma, L.; Hu, N.; Song, Y.B.; Liu, Y.F.; Wu, C.F.; Zhang, J.H. Structure and function relationship of toxin from Chinese scorpion Buthus martensii Karsch (BmKAGAP): Gaining insight into related sites of analgesic activity. Peptides, 2010, 31(6), 995-1000.
[127]
Cui, Y.; Liu, Y.; Chen, Q.; Zhang, R.; Song, Y.; Jiang, Z.; Wu, C.; Zhang, J. Genomic cloning, characterization and statistical analysis of an antitumor-analgesic peptide from Chinese scorpion Buthus martensii Karsch. Toxicon, 2010, 56(3), 432-439.
[128]
Cui, Y.; Guo, G.L.; Liu, Y.F.; Mao, Y.Z.; Zhang, R.; Wu, C.F.; Zhang, J.H. Construction of three different recombinant scorpion fusion proteins with bifunctional activity. Indian J. Biochem. Biophys., 2011, 48(3), 141-147.
[129]
Liu, X.; Li, C.; Chen, J.; Du, J.; Zhang, J.; Li, G.; Jin, X.; Wu, C. AGAP, a new recombinant neurotoxic polypeptide, targets the voltage-gated calcium channels in rat small diameter DRG neurons. Biochem. Biophys. Res. Commun., 2014, 452(1), 60-65.
[130]
Cao, Q.; Lu, W.; Cai, X.; Hu, C.; Wang, C.; Ye, J.; Yan, H.; Yang, Y.; Wang, Z.; Huo, J.; Liu, Y.; Yu, Y.; Ling, C.; Cao, P. In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumor-analgesic peptide produced in Escherichia coli. Biotechnol. Lett., 2015, 37(12), 2461-2466.
[131]
Su-Bai, P.; Da-Jiang, P. 30 cases of intracranial tumor treated with chong xie sou liu jian. N. J. Trad. Chin. Med, 2001, 33(1), 54-55.
[132]
Yuqing, L.; Lan, H.; Hongmei, W.; Zengchun, L.; Jingli, F. Clinical research of scorpion treating malignant tumor. J. Trop. Med., 2003, 3(4), 484-488.
[133]
Wei, L.; Ye, Z.; Shouxing, Z.; Bin, Z. Clinical observation of Chinese herbal compound treating advanced gastrointestinal cancer. Jilin J. Trad. Chin. Med, 2012, 32(9), 900-902.
[134]
Yanxin, C.; Wenhua, Y.; Xiangdong, Y. The effect of clinical research of scorpion detoxification decoction treating chronic myeloid leukemia. Yunnan J. Trad. Chin. Med. Mater. Med., 2012, 33(3), 12-14.
[135]
Dian-You, Z.; Yun-Ting, P.; Li-Hua, J. 30 cases of hepatocellular carcinoma treated with AFSVC by transcatheter arterial chemoembolization. J. Henan Med. Univ., 1997, 32(4), 95-96.
[136]
Lidong, S.; Han, K. Clinical observation of AFSVC for treating advanced hepatocellular carcinoma by transcatheter arterial chemoembolization. J. Henan Med. Univ., 1996, 31(3), 25-26.
[137]
Bao-Gen, M.; Xing-Ya, L. Clinical observation of scorpion venom for external use treating cancerous ulcer. Bull. Chin. Cancer, 2000, 9(4), 187.
[138]
Yu-Qing, L.; Zeng-Chun, L.; Jing-Li, F. Clinical application of scorpion venom extract treating malignant tumor. J. Trop. Med., 2003, 3(2), 246-248.
[139]
Zhihua, Y.; Guiyuan, X.; Zhuoping, Y.; Jinwu, G.; Tianhan, K. Clinical treatment of the tumor in medium and advanced stage with capsules of antineoplastic factor of scorpion venom combined with radiotherapy. J. Henan Med. Univ., 2000, 35(4), 294-296.
[140]
Dong, W.; Chun-Fang, G.; Guo-Bao, Z. Clinical pathologic and electron microscopic observation of enema with scorpion venom for rectal cancer. Chin. J. Coloproctol., 2001, 21(8), 11-14.
[141]
Debin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol., 1993, 264(2 Pt 1), C361-C369.
[142]
Mamelak, A.N.; Rosenfeld, S.; Bucholz, R.; Raubitschek, A.; Nabors, L.B.; Fiveash, J.B.; Shen, S.; Khazaeli, M.B.; Colcher, D.; Liu, A.; Osman, M.; Guthrie, B.; Schade-Bijur, S.; Hablitz, D.M.; Alvarez, V.L.; Gonda, M.A. Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol., 2006, 24(22), 3644-3650.
[143]
Dardevet, L.; Rani, D.; Aziz, T.A.; Bazin, I.; Sabatier, J.M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel), 2015, 7(4), 1079-1101.
[144]
Zeng, X.C.; Li, W.X.; Zhu, S.Y.; Peng, F.; Zhu, Z.H.; Wu, K.L.; Yiang, F.H. Cloning and characterization of a cDNA sequence encoding the precursor of a chlorotoxin-like peptide from the Chinese scorpion Buthus martensii Karsch. Toxicon, 2000, 38(8), 1009-1014.
[145]
Fu, Y.J.; Yin, L.T.; Wang, W.; Chai, B.F.; Liang, A.H. Synthesis, expression and purification of a type of chlorotoxin-like peptide from the scorpion, Buthus martensii Karsch, and its acute toxicity analysis. Biotechnol. Lett., 2005, 27(20), 1597-1603.
[146]
Fu, Y.J.; Yin, L.T.; Liang, A.H.; Zhang, C.F.; Wang, W.; Chai, B.F.; Yang, J.Y.; Fan, X.J. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci. Lett., 2007, 412(1), 62-67.
[147]
Fu, Y.J.; An, N.; Chan, K.G.; Wu, Y.B.; Zheng, S.H.; Liang, A.H. A model of BmK CT in inhibiting glioma cell migration via matrix metalloproteinase-2 from experimental and molecular dynamics simulation study. Biotechnol. Lett., 2011, 33(7), 1309-1317.
[148]
Zang, M.; Liu, X.; Chen, L.; Xiao, Q.; Yuan, L.; Yang, J. Determination of BmKCT-13, a chlorotoxin-like peptide, in rat plasma by LC-MS/MS: application to a preclinical pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 125-131.
[149]
Bergeron, Z.L.; Bingham, J.P. Scorpion toxins specific for potassium (K+) channels: A historical overview of peptide bioengineering. Toxins (Basel), 2012, 4(11), 1082-1119.
[150]
Galvez, A.; Gimenez-Gallego, G.; Reuben, J.P.; Roy-Contancin, L.; Feigenbaum, P.; Kaczorowski, G.J.; Garcia, M.L. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J. Biol. Chem., 1990, 265(19), 11083-11090.
[151]
Schickling, B.M.; England, S.K.; Aykin-Burns, N.; Norian, L.A.; Leslie, K.K.; Frieden-Korovkina, V.P. BKCa channel inhibitor modulates the tumorigenic ability of hormone-independent breast cancer cells via the Wnt pathway. Oncol. Rep., 2015, 33(2), 533-538.
[152]
Garcia-Calvo, M.; Leonard, R.J.; Novick, J.; Stevens, S.P.; Schmalhofer, W.; Kaczorowski, G.J.; Garcia, M.L. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem., 1993, 268(25), 18866-18874.
[153]
Jang, S.H.; Choi, S.Y.; Ryu, P.D.; Lee, S.Y. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur. J. Pharmacol., 2011, 651(1-3), 26-32.
[154]
Gupta, S.D.; Gomes, A.; Debnath, A.; Saha, A.; Gomes, A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: Through mitochondrial pathway and inhibition of heat shock proteins. Chem. Biol. Interact., 2010, 183(2), 293-303.
[155]
Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Chen, T.; Shaw, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie, 2013, 95(9), 1784-1794.
[156]
Ding, J.; Chua, P.J.; Bay, B.H.; Gopalakrishnakone, P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp. Biol. Med. (Maywood), 2014, 239(4), 387-393.
[157]
Orsolic, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[158]
Juxiang, W.; Chaolin, Z.; Ruiping, W.; Hong, D.; Chen, Y. Clinical observation on treatment of malignant tumor with bee venom injection. J Nanjing Univ. Trad. Chin. Med., 2006, 22(3), 1-10.
[159]
Perry, B.; Zhang, J.; Saleh, T.; Wang, Y. Liuwei. Dihuang, a traditional Chinese herbal formula, suppresses chronic inflammation and oxidative stress in obese rats. J. Integr. Med., 2014, 12(5), 447-454.
[160]
Reid, P.F. Alpha-cobratoxin as a possible therapy for multiple sclerosis: a review of the literature leading to its development for this application. Crit. Rev. Immunol., 2007, 27(4), 291-302.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy