Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Microwave-Assisted Synthesis of Novel Bis-Flavone Dimers as New Anticancer Agents

Author(s): Andrew McGown, Abby Ragazzon-Smith, John A. Hadfield, Herman Potgetier and Patricia A. Ragazzon*

Volume 16, Issue 1, 2019

Page: [66 - 75] Pages: 10

DOI: 10.2174/1570178615666180621094529

Price: $65

Abstract

In this study, we describe a microwave-based click chemistry method used to prepare a family of novel bis-flavone dimers. The substituted 7-hydroxy and 4’-hydroxy flavonoids were linked through a triazole ring. The compounds were easily synthesized and purified in high yields. The bisflavonoids were tested on different cell lines including HCT116, HepG2, MCF7 and MOLT-4. Several analogues showed to have anticancer activity with IC50 values in the range of 20-60 μM. Flavonoids are known for their anticancer properties and this method provides the basis for new medicinal structures.

Keywords: Flavonoid, bis-flavonoid, green-chemistry, click-chemistry, microwave-assisted chemistry, anticancer.

Graphical Abstract

[1]
Fusi, F.; Spiga, O.; Trezza, A.; Sgaragli, G.; Saponara, S. Eur. J. Pharmacol., 2017, 796, 158-174.
[2]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Curr. Cancer Drug Targets, 2008, 8, 634-646.
[3]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. Pharmacol. Rev., 2000, 52, 673-751.
[4]
Ishaq, M.S.; Afridi, M.S.; Khattak, M.; Ahmad, S. Sci. World J., 2014.
[http://dx.doi.org/10.1155/2014/269793]
[5]
Mujeeb, F.; Bajpai, P.; Pathak, N. BioMed Res. Int., 2014.
[http://dx.doi.org/10.1155/2014/497606]
[6]
Lin, B.W.; Gong, C.C.; Song, H.F. Br. J. Pharmacol., 2016, 174, 1226-1243.
[7]
Ragazzon, P.A.; Bradshaw, T.; Matthews, C.; Iley, J.; Missailidis, S. Anticancer Res., 2009, 29, 2273-2283.
[8]
Tanemossua, S.A.; Franke, K.; Schmidt, A.N.; Wabo, H.K.; Tane, P.; Wessjohanna, L. Phytochemistry, 2015, 105, 171-177.
[9]
Nakashima, K.; Abe, N.; Kamiya, K.; Ito, T.; Oyama, M.; Iinuma, M. Helv. Chim. Acta, 2009, 92, 1999-2008.
[10]
Ramaswamy, A.S.; Basu, N. Vasopeptides, 1972, 46, 357-360.
[11]
Pelter, A. Tetrahedron Lett., 1967, 19, 1767-1771.
[12]
Roitman, J.N.; Wong, R.Y.; Wollenweber, E. Phytochemistry, 1993, 34, 297-301.
[13]
Sawada, T. Yakugaku Zasshi, 1958, 78, 1023-1027.
[14]
Mahal, H.S.; Venkataraman, K. J. Chem. Soc., 1934, 56, 1767-1769.
[15]
Ares, J.J.; Outt, P.E.; Kakodkar, S.V.; Buss, R.C.; Geiger, J.C. J. Org. Chem., 1993, 58, 7903-7905.
[16]
Kshatriya, R.B.; Shaikh, Y.I.; Nazeruddin, G.M. Orient. J. Chem., 2013, 29, 1475-1487.
[17]
Bálint, E.; Kovács, O.; Drahos, L.; Keglevich, G. Lett. Org. Chem., 2013, 10, 330-336.
[18]
Lepore, S.D.; He, T. J. Org. Chem., 2003, 68, 8261-8263.
[19]
Ragazzon, P.A.; Iley, J.; Missailidis, S. Anticancer Res., 2009, 29, 2285-2294.
[20]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
[21]
Woo, H.; Kang, H.; Kim, A.; Jang, S.; Park, J.C.; Park, S.; Kim, B.S.; Song, H.; Park, K.H. Molecules, 2012, 17, 13235-13252.
[22]
Zhang, F.; Moses, J.E. Org. Lett., 2009, 11, 1587-1590.
[23]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
[24]
McKeage, M.J.; Baguley, B.C. Cancer, 2010, 116, 1859-1871.
[25]
Merlo, D.F.; Filiberti, R.; Kobernus, M.; Bartonova, A.; Gamulin, M.; Ferencic, Z.; Dusinska, M.; Fucic, A. Environ. Health, 2012, •••
[http://dx.doi.org/10.1186/1476-069X-11-S1-S9]
[26]
Hochberg, M.E.; Noble, R.J. Ecol. Lett., 2017, 20, 117-134.
[27]
Hadden, M.K.; Blagg, B.S.J. Anticancer. Agents Med. Chem., 2008, 8, 807-816.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy