Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Recent Development on Importance of Heterocyclic Amides as Potential Bioactive Molecules: A Review

Author(s): Samridhi Thakral and Vikramjeet Singh*

Volume 15, Issue 3, 2019

Page: [316 - 336] Pages: 21

DOI: 10.2174/1573407214666180614121140

Price: $65

Abstract

Background: Heterocyclic compounds are an integral part of the chemical and life sciences and constitute a considerable quantum of the modern research that is being currently pursued throughout the world.

Methods: This review was prepared by collecting the available literature reports on various databases and an extract was prepared for each report after thorough study and compiling the recent literature reports on heterocyclic amides from 2007 to 2018.

Results: This review summarizes the bio-potential of heterocyclic amides as antimicrobial, anticancer, anti-tubercular and antimalarial agents which would be very promising in the field of medicinal chemistry.

Conclusion: A wide variety of heterocyclic amides have already been reported and some are currently being used as active medicaments for the treatment of disease. Still, the research groups are focusing on the development of newer heterocyclic amide derivatives with better efficacy, potency and lesser side effects. This area has got the tremendous potential to come up with new chemical entities of medicinal importance.

Keywords: Heterocycles, bioactivity, antimicrobial, anticancer, anti-tubercular, antimalarial.

Graphical Abstract

[1]
Zaky, H.T.; Mohamed, M.I.; Kandile, N.G. Efficient synthesis of new oxindol-based heterocyclic entities via indolin-2-one derivatives. Arab. J. Chem., 2014, 7(5), 630-638.
[2]
Schärfer, C.; Schulz-Gasch, T.; Ehrlich, H.C.; Guba, W.; Rarey, M.; Stahl, M. Torsion angle preferences in druglike chemical space: a comprehensive guide. J. Med. Chem., 2013, 56(5), 2016-2028.
[3]
Reid, R.C.; Yau, M.K.; Singh, R.; Lim, J.; Fairlie, D.P. Stereoelectronic effects dictate molecular conformation and biological function of heterocyclic amides. J. Am. Chem. Soc., 2014, 136(34), 11914-11917.
[4]
Muskawar, P.N.; Thenmozhi, K.; Bhagat, P.R. Designing of thermally stable amide functionalized benzimidazolium perchlorate ionic liquid for transamidation of primary carboxamides. App. Catal. A., 2015, 493, 158-167.
[5]
Suresh, A.S.; Baburajan, P.; Ahmed, M. Synthesis of primary amides by aminocarbonylation of aryl/hetero halides using non-gaseous NH3 and CO sources. Tetrahedron Lett., 2015, 56(34), 4864-4867.
[6]
Singh, G.; Rani, S.; Saroa, A.; Arora, A.; Choquesillo-Lazarte, D. Amide-tethered organosilatranes: Syntheses, structural characterization and photophysical properties. Inorg. Chim. Acta, 2015, 433, 78-91.
[7]
Cui, Y.; Rao, X.; Shang, S.; Song, Z.; Shen, M.; Liu, H. Synthesis, structure analysis and antibacterial activity of N-[5-dehydroabietyl-[1, 3, 4] thiadiazol-2-yl]-aromatic amide derivatives. J. Saudi Chem. Soc., 2017, 21, S258-S263.
[8]
Nayak, P.S.; Narayana, B.; Sarojini, B.K.; Hegde, K.; Shashidhara, K.S. Design and synthesis of novel heterocyclic acetamide derivatives for potential analgesic, anti-inflammatory, and antimicrobial activities. Med. Chem. Res., 2014, 23(9), 4280-4294.
[9]
Liu, H.B.; Tang, H.; Yang, D.; Deng, Q.; Yuan, L.J.; Ji, Q.G. Synthesis and biological evaluation of novel N-acyl substituted quinolin-2(1H)-one derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5845-5848.
[10]
Shah, S.A.S.; Ashfaq, M.; Najam, T.; Ahmed, M.M.; Shaheen, S.; Tabassum, R.; Ejaz, S.A. Synthesis of sulfonamides, metal complexes and the study of in vitro biological activities. Curr. Bioact. Compd., 2013, 9(3), 211-220.
[11]
Krishnaiah, M.; de Almeida, N.R.; Udumula, V.; Song, Z.; Chhonker, Y.S.; Abdelmoaty, M.M.; do Nascimento, V.A.; Murry, D.J.; Conda-Sheridan, M. Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents. Eur. J. Med. Chem., 2018, 143, 936-947.
[12]
Zhang, H.Z.; He, S.C.; Peng, Y.J.; Zhang, H.J.; Gopala, L.; Tangadanchu, V.K.R.; Gan, L.L.; Zhou, C.H. Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur. J. Med. Chem., 2017, 136, 165-183.
[13]
G, J.D.; Poornachandra, Y.; Ratnakar Reddy, K.; Naresh Kumar, R.; Ravikumar, N.; Krishna Swaroop, D.; Ranjithreddy, P.; Shravan Kumar, G.; Nanubolu, J.B.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel pyrazolo[3,4-b]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and CoMFA analysis. Eur. J. Med. Chem., 2017, 130, 223-239.
[14]
Varshney, H.; Ahmad, A.; Rauf, A.; Husain, F.M.; Ahmad, I. Synthesis and antimicrobial evaluation of fatty chain substituted 2, 5-dimethyl pyrrole and 1, 3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc., 2017, 21, S394-S402.
[15]
Pawase, L.S.; Mane, D.V.; Baheti, K. Synthesis and antibacterial activity of novel sulphonamide containing 1,3-diarylpyrazolyl amides. Curr. Bioact. Compd., 2017, 14(2), 163-168.
[16]
Pejchal, V.; Pejchalová, M.; Ruzickova, Z. Synthesis, structural characterization, antimicrobial and antifungal activity of substituted 6-fluorobenzo [d] thiazole amides. Med. Chem. Res., 2015, 24(10), 3660-3670.
[17]
Abdellatif, K.R.; El Wareth, G.A.A.; El-Badry, O.M.; Ragab, H.M.; El-Enany, M.M. Synthesis and antimicrobial evaluation of certain purine, benzothiazole and thiazole systems substituted with dialkylaminoalkyl-o-cresols. Beni-Suef Univ. J. Basic Appl. Sci., 2015, 4(1), 52-59.
[18]
Divaeva, L.N.; Morkovnik, A.S.; Zubenko, A.A.; Kuzmenko, T.A.; Fetisov, L.N.; Bodryakov, A.N.; Bodryakova, M.A. Synthesis, antimicrobial, and protisticidal activity of 3-aryloxyethyl(benzyl)-1-carbamoylmethyl-2-iminobenzimidazoline hydrochlorides. Pharm. Chem. J., 2015, 48(10), 661-664.
[19]
Konda, S.; Raparthi, S.; Bhaskar, K.; Munaganti, R.K.; Guguloth, V.; Nagarapu, L.; Akkewar, D.M. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg. Med. Chem. Lett., 2015, 25(7), 1643-1646.
[20]
Reddy, L.M.; Prakash, T.B.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of pyrazolyl benzoxazoles, benzothiazoles and benzimidazoles. Med. Chem. Res., 2015, 24(3), 970-979.
[21]
Diwakar, B.S.; Govindh, B.; Sastry, Y.N.; Kaladhar, D.S.V.G.K.; Murthy, Y.L.N. Synthesis, X-ray characterization and biological evaluation of some new 2-(4-methy-2-oxo-2H-chromen-7yloxy) acetamide derivatives. Med. Chem. Res., 2015, 24(4), 1546-1557.
[22]
Divya, K.; Sravya, G.; Padmaja, A.; Padmavathi, V. Synthesis and antimicrobial activity of bis-heterocyclic sulfamoyl acetamides. Res. Chem. Intermed., 2015, 41(7), 4413-4426.
[23]
Desai, N.C.; Kotadiya, G.M. Microwave-assisted synthesis of benzimidazole bearing 1, 3, 4-oxadiazole derivatives: screening for their in vitro antimicrobial activity. Med. Chem. Res., 2014, 23(9), 4021-4033.
[24]
Deep, A.; Jain, S.; Sharma, P.C.; Mittal, S.K.; Phogat, P.; Malhotra, M. Synthesis, characterization and antimicrobial evaluation of 2, 5-disubstituted-4-thiazolidinone derivatives. Arab. J. Chem., 2014, 7(3), 287-291.
[25]
Serkov, S.A.; Sigai, N.V.; Kostikova, N.N.; Bulatov, P.V.; Epishina, M.A. Synthesis and antimicrobial activity of phenylthioand benzylsulfonylacetic acids based on 2-amino-5-alkyl (arylalkyl)-1, 3, 4-thiadiazoles. Pharm. Chem. J., 2014, 48(1), 20-21.
[26]
Nayak, P.S.; Narayana, B.; Sarojini, B.K.; Hegde, K.; Shashidhara, K.S. Design and synthesis of novel heterocyclic acetamide derivatives for potential analgesic, anti-inflammatory, and antimicrobial activities. Med. Chem. Res., 2014, 23(9), 4280-4294.
[27]
Soni, J.N.; Soman, S.S. Synthesis and antimicrobial evaluation of amide derivatives of benzodifuran-2-carboxylic acid. Eur. J. Med. Chem., 2014, 75, 77-81.
[28]
Gore, R.P. Synthesis, characterization and antimicrobial activity of N′-(substituted phenyl)-2-(1H-azol-1-yl) acetamides. Pharma Chem., 2014, 6(6), 35-38.
[29]
Desai, N.C.; Vaghani, H.V.; Rajpara, K.M.; Joshi, V.V.; Satodiya, H.M. Novel approach for synthesis of potent antimicrobial hybrid molecules containing pyrimidine-based imidazole scaffolds. Med. Chem. Res., 2014, 23(10), 4395-4403.
[30]
Desai, N.C.; Dodiya, A.M.; Rajpara, K.M.; Rupala, Y.M. Synthesis and antimicrobial screening of 1,3,4-oxadiazole and clubbed thiophene derivatives. J. Saudi Chem. Soc., 2014, 18(3), 255-261.
[31]
Gupta, Y.K.; Gupta, V.; Singh, S. Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives. J. Pharm. Res., 2013, 7, 491-495.
[32]
Desai, N.C.; Bhatt, N.; Somani, H.; Trivedi, A. Synthesis, antimicrobial and cytotoxic activities of some novel thiazole clubbed 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2013, 67, 54-59.
[33]
Liu, H.B.; Tang, H.; Yang, D.; Deng, Q.; Yuan, L.J.; Ji, Q.G. Synthesis and biological evaluation of novel N-acyl substituted quinolin-2(1H)-one derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5845-5848.
[34]
Sharma, R.; Vijay, V. Synthesis and antimicrobial activity of thiazolidinone derivatives. Int. J. Sci. Res. Rev., 2012, 1(1), 57-66.
[35]
Mahiwal, K.; Kumar, P.; Narasimhan, B. Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives. Med. Chem. Res., 2012, 21(3), 293-307.
[36]
Padmavathi, V.; Prema Kumari, C.; Venkatesh, B.C.; Padmaja, A. Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur. J. Med. Chem., 2011, 46(11), 5317-5326.
[37]
Ramachandran, R.; Rani, M.; Senthan, S.; Jeong, Y.T.; Kabilan, S. Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives. Eur. J. Med. Chem., 2011, 46(5), 1926-1934.
[38]
Patel, N.B.; Patel, S.D.; Chauhan, H.I. Synthesis and in vitro microbial activities of amides of pyridoquinolone. Med. Chem. Res., 2011, 20(7), 1054-1067.
[39]
Aridoss, G.; Balasubramanian, S.; Parthiban, P.; Ramachandran, R.; Kabilan, S. Synthesis and antimicrobial activities of N-chloroacetyl-2, 6-diarylpiperidin-4-ones. Med. Chem. Res., 2007, 16(4), 188-204.
[40]
Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem., 2018, 143, 1604-1615.
[41]
Tian, Y.; Zhang, T.; Long, L.; Li, Z.; Wan, S.; Wang, G.; Yu, Y.; Hou, J.; Wu, X.; Zhang, J. Design, synthesis, biological evaluation and molecular modeling of novel 2-amino-4-(1-phenylethoxy) pyridine derivatives as potential ROS1 inhibitors. Eur. J. Med. Chem., 2018, 143, 182-199.
[42]
Gujarati, N.A.; Zeng, L.; Gupta, P.; Chen, Z.S.; Korlipara, V.L. Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(20), 4698-4704.
[43]
Guo, J.; Zhu, M.; Wu, T.; Hao, C.; Wang, K.; Yan, Z.; Huang, W.; Wang, J.; Zhao, D.; Cheng, M. Discovery of indolin-2-one derivatives as potent PAK4 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Bioorg. Med. Chem., 2017, 25(13), 3500-3511.
[44]
Poudapally, S.; Battu, S.; Velatooru, L.R.; Bethu, M.S.; Janapala, V.R.; Sharma, S.; Sen, S.; Pottabathini, N.; Iska, V.B.R.; Katangoor, V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(9), 1923-1928.
[45]
Bozdag, M.; Alafeefy, A.M.; Altamimi, A.M.; Carta, F.; Supuran, C.T.; Vullo, D. Synthesis of new 3-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-benzenesulfonamides with strong inhibition properties against the tumor associated carbonic anhydrases IX and XII. Bioorg. Med. Chem., 2017, 25(10), 2782-2788.
[46]
Dao, P.; Lietha, D.; Etheve-Quelquejeu, M.; Garbay, C.; Chen, H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1727-1730.
[47]
Kalpana, K.; Kumar, K.R.; Babu, A.V.; Vanjivaka, S.; Vantikommu, J.; Palle, S. Synthesis and biological evaluation of pyrazole amides fused combretastatin derivatives as anticancer agents. Curr. Bioact. Compd., 2017, 14(4), 357-363.
[48]
Alafeefy, A.M.; Ahmad, R.; Abdulla, M.; Eldehna, W.M.; Al-Tamimi, A.M.S.; Abdel-Aziz, H.A.; Al-Obaid, O.; Carta, F.; Al-Kahtani, A.A.; Supuran, C.T. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. Eur. J. Med. Chem., 2016, 109, 247-253.
[49]
Appalanaidu, K.; Kotcherlakota, R.; Dadmal, T.L.; Bollu, V.S.; Kumbhare, R.M.; Patra, C.R. Synthesis and biological evaluation of novel 2-imino-4-thiazolidinone derivatives as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(21), 5361-5368.
[50]
Zayed, M.F.; Ahmed, H.E.; Ihmaid, S.; Omar, A.S.M.; Abdelrahim, A.S. Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents. J. Taibah Univ Med. Sci., 2015, 10(3), 333-339.
[51]
Gamal El-Din, M.M.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C.H. Synthesis and in vitro antiproliferative activity of new 1,3,4-oxadiazole derivatives possessing sulfonamide moiety. Eur. J. Med. Chem., 2015, 90, 45-52.
[52]
Lal, K.; Kaushik, C.P.; Kumar, K.; Kumar, A.; Qazi, A.K.; Hamid, A.; Jaglan, S. One-pot synthesis and cytotoxic evaluation of amide-linked 1, 4-disubstituted 1, 2, 3-bistriazoles. Med. Chem. Res., 2014, 23(11), 4761-4770.
[53]
Ubaradka, S.R.; Isloor, A.M.; Shetty, P.; Pai, K.S.R.; Fun, H.K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab. J. Chem., 2014, 8(3), 317-321.
[54]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis and anticancer activity evaluation of new 1, 2, 3-triazole-4-carboxamide derivatives. Med. Chem. Res., 2014, 23(5), 2426-2438.
[55]
Li, Y.J.; Qin, Y.J.; Makawana, J.A.; Wang, Y.T.; Zhang, Y.Q.; Zhang, Y.L.; Yang, M.R.; Jiang, A.Q.; Zhu, H.L. Synthesis, biological evaluation and molecular modeling of 1,3,4-thiadiazol-2-amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2014, 22(15), 4312-4322.
[56]
El-Gamal, M.I.; Khan, M.A.; Abdel-Maksoud, M.S.; Gamal El-Din, M.M.; Oh, C.H. A new series of diarylamides possessing quinoline nucleus: Synthesis, in vitro anticancer activities, and kinase inhibitory effect. Eur. J. Med. Chem., 2014, 87, 484-492.
[57]
de Oliveira, M.G.; Figueredo, A.S.; de Aquino, G.L.B.; Leopoldino, A.M.; da Silva, V.B.; Taft, C.A.; de Paula da Silva, C.H.T. In silico design of phenylbenzamide derivatives coupled to pyrimidines as novel hnRNP K ligands against cancer. Curr. Bioact. Compd., 2014, 10(3), 158-162.
[58]
Chavva, K.; Pillalamarri, S.; Banda, V.; Gautham, S.; Gaddamedi, J.; Yedla, P.; Kumar, C.G.; Banda, N. Synthesis and biological evaluation of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(21), 5893-5895.
[59]
Guo, J.; Dong, W.; Liu, W.; Yan, Z.; Wang, N.; Liu, Z. Synthesis and cytotoxicity of 3-aryl acrylic amide derivatives of the simplified saframycin-ecteinascidin skeleton prepared from L-dopa. Eur. J. Med. Chem., 2013, 62, 670-676.
[60]
Kovalenko, S.I.; Nosulenko, I.S.; Voskoboynik, A.Y.; Berest, G.G.; Antipenko, L.N.; Antipenko, A.N.; Katsev, A.M. Novel N-aryl (alkaryl)-2-[(3-R-2-oxo-2H-[1, 2, 4] triazino [2, 3-c] quinazoline-6-yl) thio] acetamides: synthesis, cytotoxicity, anticancer activity, COMPARE analysis and docking. Med. Chem. Res., 2013, 22(6), 2610-2632.
[61]
Kongkathip, B.; Akkarasamiyo, S.; Hasitapan, K.; Sittikul, P.; Boonyalai, N.; Kongkathip, N. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation. Eur. J. Med. Chem., 2013, 60, 271-284.
[62]
Yang, X.H.; Xiang, L.; Li, X.; Zhao, T.T.; Zhang, H.; Zhou, W.P.; Wang, X.M.; Gong, H.B.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-thiadiazol-2-amide derivatives as novel anticancer agents. Bioorg. Med. Chem., 2012, 20(9), 2789-2795.
[63]
Yang, X.H.; Wen, Q.; Zhao, T.T.; Sun, J.; Li, X.; Xing, M.; Lu, X.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents. Bioorg. Med. Chem., 2012, 20(3), 1181-1187.
[64]
Feng, C.; Wang, L.; Yan, Y.; Liu, J.; Li, S. Synthesis and antitumor evaluation of some 1, 3, 4-oxadiazole-2 (3H)-thione and 1, 2, 4-triazole-5 (1H)-thione derivatives. Med. Chem. Res., 2012, 21(3), 315-320.
[65]
Berest, G.G.; Voskoboynik, O.Y.; Kovalenko, S.I.; Antypenko, O.M.; Nosulenko, I.S.; Katsev, A.M.; Shandrovskaya, O.S. Synthesis and biological activity of novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides. Eur. J. Med. Chem., 2011, 46(12), 6066-6074.
[66]
Rostom, S.A. Polysubstituted pyrazoles, part 6. Synthesis of some 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazol-3-carbonyl derivatives linked to nitrogenous heterocyclic ring systems as potential antitumor agents. Bioorg. Med. Chem., 2010, 18(7), 2767-2776.
[67]
Pachuta-Stec, A.; Rzymowska, J.; Mazur, L.; Mendyk, E.; Pitucha, M.; Rzaczyńska, Z. Synthesis, structure elucidation and antitumour activity of N-substituted amides of 3-(3-ethylthio-1,2,4-triazol-5-yl)propenoic acid. Eur. J. Med. Chem., 2009, 44(9), 3788-3793.
[68]
Giacobbo, B.C.; Pissinate, K.; Rodrigues-Junior, V.; Villela, A.D.; Grams, E.S.; Abbadi, B.L.; Subtil, F.T.; Sperotto, N.; Trindade, R.V.; Back, D.F.; Campos, M.M.; Basso, L.A.; Machado, P.; Santos, D.S. New insights into the SAR and drug combination synergy of 2-(quinolin-4-yloxy)acetamides against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2017, 126, 491-501.
[69]
Bhuva, N.H.; Talpara, P.K.; Singala, P.M.; Gothaliya, V.K.; Shah, V.H. Synthesis and biological evaluation of pyrimidinyl sulphonamide derivatives as promising class of antitubercular agents. J. Saudi Chem. Soc., 2017, 21(5), 517-527.
[70]
Nayak, N.; Ramprasad, J.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Synthesis and antimycobacterial screening of new N-(4-(5-aryl-3-(5-methyl-1, 3, 4-oxadiazol-2-yl)-1H-pyrazol-1-yl) phenyl)-4-amide derivatives. Chin. Chem. Lett., 2016, 27(3), 365-369.
[71]
Naidu, K.M.; Nagesh, H.N.; Singh, M.; Sriram, D.; Yogeeswari, P.; Gowri Chandra Sekhar, K.V. Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Med. Chem., 2015, 92, 415-426.
[72]
Ranjith, P.K.; Pakkath, R.; Haridas, K.R.; Kumari, S.N. Synthesis and characterization of new N-(4-(4-chloro-1H-imidazol-1-yl)-3-methoxyphenyl)amide/sulfonamide derivatives as possible antimicrobial and antitubercular agents. Eur. J. Med. Chem., 2014, 71, 354-365.
[73]
Patel, K.N.; Telvekar, V.N. Design, synthesis and antitubercular evaluation of novel series of N-[4-(piperazin-1-yl)phenyl] cinnamamide derivatives. Eur. J. Med. Chem., 2014, 75, 43-56.
[74]
Karuvalam, R.P.; Pakkath, R.; Haridas, K.R.; Rishikesan, R.; Kumari, N.S. Synthesis, characterization, and SAR studies of new (1H-indol-3-yl) alkyl-3-(1H-indol-3-yl) propanamide derivatives as possible antimicrobial and antitubercular agents. Med. Chem. Res., 2013, 22(9), 4437-4454.
[75]
Sonia, G.; Ravi, T.K. Oxadiazolo pyrrolidine carboxamides as enoyl-ACP reductase inhibitors: Design, synthesis and antitubercular activity screening. Med. Chem. Res., 2013, 22(7), 3428-3433.
[76]
Kanagarajan, V.; Gopalakrishnan, M. Pyrimidino piperazinyl acetamides: innovative class of hybrid acetamide drugs as potent antimicrobial and antimycobacterial agents. Pharm. Chem. J., 2012, 46(1), 26-34.
[77]
Thomas, K.D.; Adhikari, A.V.; Chowdhury, I.H.; Sumesh, E.; Pal, N.K. New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. Eur. J. Med. Chem., 2011, 46(6), 2503-2512.
[78]
Patel, T.S.; Bhatt, J.D.; Vanparia, S.F.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Ionic liquid mediated stereoselective synthesis of alanine linked hybrid quinazoline-4(3H)-one derivatives perturbing the malarial reductase activity in folate pathway. Bioorg. Med. Chem., 2017, 25(24), 6635-6646.
[79]
Silva, T.B.; Bernardino, A.M.R.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine-sulfonamide derivatives. Bioorg. Med. Chem., 2016, 24(18), 4492-4498.
[80]
Raj, R.; Saini, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline–chalcone and 7-chloroquinoline–ferrocenylchalcone conjugates. Eur. J. Med. Chem., 2015, 95, 230-239.
[81]
Smit, F.J.; N’da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem., 2014, 22(3), 1128-1138.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy