Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Joint Voltammetry Technology with a Multi-electrode Array for Four Basic Tastes

Author(s): Lin Lu, Xianqiao Hu and Zhiwei Zhu*

Volume 15, Issue 1, 2019

Page: [75 - 83] Pages: 9

DOI: 10.2174/1573411014666180522100504

Price: $65

Abstract

Background: Rapid and easy technology which can mimic the tongue for the simultaneous perception of several tastes based on sensory analysis and mathematical statistics is sorely needed.

Methods: Joint voltammetry technology was developed to qualitatively and quantitatively analyze four basic tastes namely sweetness, saltiness, sourness and bitterness with the multi-electrode array. Four taste stimuli were corresponded to four tastes. Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Square Wave Voltammetry (SWV) were employed. The original voltammetric signals were transformed by Continuous Wavelet Transform (CWT) in order to reveal more feature information for sensing taste stimuli. Joint voltammetry was applied via the combination of voltammetry. The data of feature points from the transformed signal as the input were used for neural network model.

Results: Layer-Recurrent neural network (LRNN) could effectively identify the types of stimuli. The accuracies of the training set and test set by joint voltammetry were both higher than that of regular voltammetry, confirming that Back Propagation neural network (BPNN) could quantitatively predict single taste stimulus of the mixture.

Conclusion: Joint voltammetry technology had a strong ability to sense basic tastes as human tongue.

Keywords: Basic taste, electrode, taste stimulus, voltammetry, Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), Square Wave Voltammetry (SWV).

Graphical Abstract

[1]
Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.P.; Zuker, C.S. The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.
[2]
Toko, K.; Hara, D.; Tahara, Y.; Yasuura, M.; Ikezaki, H. Relationship between the amount of bitter substances adsorbed onto lipid/polymer membrane and the electric response of taste sensors. Sensors, 2014, 14, 16274-16286.
[3]
Legin, A.; Rudnitskaya, A.; Seleznew, B.; Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eaudevi. Anal. Chim. Acta, 2005, 534, 129-135.
[4]
Winquist, F.; Bjorklund, R.; Krantz-Rulcker, C.; Lundstrom, I.; Ostergren, K.; Skoglund, T. An electronic tongue in the dairy industry. Sens. Actuat. B, 2005, 111, 299-304.
[5]
Olsson, J.; Ivarsson, P.; Winquist, F. Determination of detergents in washing machine wastewater with a voltammetric electronic tongue. Talanta, 2008, 76, 91-95.
[6]
Tian, S.Y.; Deng, S.P.; Chen, Z.X. Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue. Sens. Actuat. B., 2007, 123, 1049-1056.
[7]
Pioggia, G.; Di Francesco, F.; Marchetti, A.; Ferro, M.; Ahluwalia, A. A composite sensor array impedentiometric electronic tongue. Part I: characterization. Biosens. Bioelectron., 2007, 22, 2618-2623.
[8]
Cortina-Puig, M.; Munoz-Berbel, X.; Alonso-Lomillo, M.A.; Munoz-Pascual, F.J.; del Valle, M. EIS multianalyte sensing with an automated SIA systemdan electronic tongue employing the impedimetric signal. Talanta, 2007, 72, 774-779.
[9]
Cetó, X.; Céspedes, F.; del Valle, M. Bioelectronic tongue for the quanti fication of total polyphenol content in wine. Talanta, 2012, 99, 544-551.
[10]
Cetó, X.; Céspedes, F.; del Valle, M. Assessment of individual polyphenol content in beer by means of a voltammetric bioelectronic tongue. Electroanalysis, 2013, 25, 68-76.
[11]
Hayashi, N.; Ujihara, T.; Chen, R.G.; Irie, K.; Ikezaki, H. Objective evaluation methods for the bitter and astringent taste intensities of black and oolong teas by a taste sensor. Food Res. Int., 2013, 53, 816-821.
[12]
Medeiros, E.S.; Gregório, R.; Martinez, R.A.; Mattoso, L.H.C. A taste sensor array based on polyaniline nanofibers for orange juice quality assessment. Sens. Lett., 2009, 7, 24-30.
[13]
Winquist, F.; Bjorklund, R.; Krantz-Rülcker, C.; Lundström, I.; Östergren, K.; Skoglund, T. An electronic tongue in the dairy industry. Sens. Actuat. B, 2005, 111, 299-304.
[14]
Gil, L.; Barat, J.M.; Escriche, I.; Garcia-Breijo, E.; Martinez-Manez, R.; Soto, J. An electronic tongue for fish freshness analysis using a thick-film array of electrodes. Mikrochim. Acta, 2008, 163, 121-129.
[15]
Gil, L.; Barat, J.M.; Baigts, D.; Martinez-Manez, R.; Soto, J.; Garcia-Breijo, E.; Aristoy, M.C.; Toldra, F.; Llobet, E. Monitoring of physical-chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chem., 2011, 126, 1261-1268.
[16]
Apetrei, C.; Rodríguez-Méndez, M.L.; Saja, J.A.D. Modified carbon paste electrodes for discrimination of vegetable oils. Sens. Actuat. B., 2005, 111, 403-409.
[17]
Lu, L.; Hu, X.Q.; Zhu, Z.W. Biomimetic sensors and biosensors for qualitative and quantitative analyses offive basic tastes. TrAC-. Trends Analyt. Chem., 2017, 87, 58-70.
[18]
Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory evaluation techniques (4th Ed.)Physiol. Behav; , 2006. 107, 598-605
[19]
Zhang, W.B. Food sensory scale field analysis: An experimental and theoretical study of gustatory behavior; Zhejiang Gongshang University: China, 2012.
[20]
Hosseini, S.M.H.; Baravati, P.R. Partial discharge localization based on detailed models of transformer and wavelet transform techniques. J. Electr. Eng. Technol., 2015, 10, 1019-1101.
[21]
Zhang, Y.Q.; Mo, J.Y.; Xie, T.Y.; Cai, P.X.; Zou, X.Y. Application of spline wavelet self-convolution in processing capillary electrophoresis overlapped peaks with noise. Anal. Chim. Acta, 2001, 437, 151-156.
[22]
Cetó, X.; Céspedes, F.; del Valle, M. Comparison of methods for the processing of voltammetric electronic tongues data. Mikrochim. Acta, 2013, 180, 319-330.
[23]
Gutés, A.; Calvo, D.; Céspedes, F.; del Valle, M. Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamol. Mikrochim. Acta, 2007, 157, 1-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy