[1]
Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem., 2006, 75, 271-294.
[2]
Nollen, E.A.; Morimoto, R.I. Chaperoning signaling pathways: Molecular chaperones as stress-sensing ‘heat shock’ proteins. J. Cell Sci., 2002, 115(Pt 14), 2809-2816.
[3]
Lai, B.T.; Chin, N.W.; Stanek, A.E.; Keh, W.; Lanks, K.W. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol. Cell. Biol., 1984, 4(12), 2802-2810.
[4]
Hickey, E.; Brandon, S.E.; Sadis, S.; Smale, G.; Weber, L.A. Molecular cloning of sequences encoding the human heat-shock proteins and their expression during hyperthermia. Gene, 1986, 43(1-2), 147-154.
[5]
Radanyi, C.; Renoir, J.M.; Sabbah, M.; Baulieu, E.E. Chick heat-shock protein of Mr = 90,000, free or released from progesterone receptor, is in a dimeric form. J. Biol. Chem., 1989, 264(5), 2568-2573.
[6]
Garnier, C.; Lafitte, D.; Jorgensen, T.J.; Jensen, O.N.; Briand, C.; Peyrot, V. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry. Eur. J. Biochem., 2001, 268(8), 2402-2407.
[7]
Prodromou, C.; Roe, S.M.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90(1), 65-75.
[8]
Prodromou, C.; Roe, S.M.; Piper, P.W.; Pearl, L.H. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat. Struct. Biol., 1997, 4(6), 477-482.
[9]
Silva, K.P.; Seraphim, T.V.; Borges, J.C. Structural and functional studies of Leishmania braziliensis Hsp90. Biochim. Biophys. Acta, 2013, 1834(1), 351-361.
[10]
Prodromou, C.; Panaretou, B.; Chohan, S.; Siligardi, G.; O’Brien, R.; Ladbury, J.E.; Roe, S.M.; Piper, P.W.; Pearl, L.H. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J., 2000, 19(16), 4383-4392.
[11]
Ratzke, C.; Mickler, M.; Hellenkamp, B.; Buchner, J.; Hugel, T. Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc. Natl. Acad. Sci. USA, 2010, 107(37), 16101-16106.
[12]
Meyer, P.; Prodromou, C.; Hu, B.; Vaughan, C.; Roe, S.M.; Panaretou, B.; Piper, P.W.; Pearl, L.H. Structural and functional analysis of the middle segment of hsp90: Implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell, 2003, 11(3), 647-658.
[13]
Minami, Y.; Kimura, Y.; Kawasaki, H.; Suzuki, K.; Yahara, I. The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol. Cell. Biol., 1994, 14(2), 1459-1464.
[14]
Marcu, M.G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L.M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem., 2000, 275(47), 37181-37186.
[15]
Garnier, C.; Lafitte, D.; Tsvetkov, P.O.; Barbier, P.; Leclerc-Devin, J.; Millot, J.M.; Briand, C.; Makarov, A.A.; Catelli, M.G.; Peyrot, V. Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem., 2002, 277(14), 12208-12214.
[16]
Bron, P.; Giudice, E.; Rolland, J.P.; Buey, R.M.; Barbier, P.; Diaz, J.F.; Peyrot, V.; Thomas, D.; Garnier, C. Apo-Hsp90 coexists in two open conformational states in solution. Biol. Cell, 2008, 100(7), 413-425.
[17]
Seraphim, T.V.; Silva, K.P.; Dores-Silva, P.R.; Barbosa, L.R.; Borges, J.C. Insights on the structural dynamics of Leishmania braziliensis Hsp90 molecular chaperone by small angle X-ray scattering. Int. J. Biol. Macromol., 2017, 97, 503-512.
[18]
Ali, M.M.; Roe, S.M.; Vaughan, C.K.; Meyer, P.; Panaretou, B.; Piper, P.W.; Prodromou, C.; Pearl, L.H. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 2006, 440(7087), 1013-1017.
[19]
Shiau, A.K.; Harris, S.F.; Southworth, D.R.; Agard, D.A. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell, 2006, 127(2), 329-340.
[20]
Richter, K.; Buchner, J. Hsp90: Twist and fold. Cell, 2006, 127(2), 251-253.
[21]
Li, J.; Buchner, J. Structure, function and regulation of the hsp90 machinery. Biomed. J., 2013, 36(3), 106-117.
[22]
Rohl, A.; Rohrberg, J.; Buchner, J. The chaperone Hsp90: Changing partners for demanding clients. Trends Biochem. Sci., 2013, 38(5), 253-262.
[23]
Li, J.; Richter, K.; Reinstein, J.; Buchner, J. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat. Struct. Mol. Biol., 2013, 20(3), 326-331.
[24]
Mayer, M.P.; Le Breton, L. Hsp90: Breaking the symmetry. Mol. Cell, 2015, 58(1), 8-20.
[25]
Roe, S.M.; Ali, M.M.; Meyer, P.; Vaughan, C.K.; Panaretou, B.; Piper, P.W.; Prodromou, C.; Pearl, L.H. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell, 2004, 116(1), 87-98.
[26]
Prodromou, C.; Siligardi, G.; O’Brien, R.; Woolfson, D.N.; Regan, L.; Panaretou, B.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J., 1999, 18(3), 754-762.
[27]
Panaretou, B.; Siligardi, G.; Meyer, P.; Maloney, A.; Sullivan, J.K.; Singh, S.; Millson, S.H.; Clarke, P.A.; Naaby-Hansen, S.; Stein, R.; Cramer, R.; Mollapour, M.; Workman, P.; Piper, P.W.; Pearl, L.H.; Prodromou, C. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell, 2002, 10(6), 1307-1318.
[28]
Chen, S.; Smith, D.F. Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J. Biol. Chem., 1998, 273(52), 35194-35200.
[29]
Nemoto, T.; Sato, N. Oligomeric forms of the 90-kDa heat shock protein. Biochem. J., 1998, 330(Pt 2), 989-995.
[30]
Soti, C.; Radics, L.; Yahara, I.; Csermely, P. Interaction of vanadate oligomers and permolybdate with the 90-kDa heat-shock protein, Hsp90. Eur. J. Biochem., 1998, 255(3), 611-617.
[31]
Garnier, C.; Barbier, P.; Devred, F.; Rivas, G.; Peyrot, V. Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: Effects of divalent cations. Biochemistry, 2002, 41(39), 11770-11778.
[32]
Jakob, U.; Meyer, I.; Bugl, H.; Andre, S.; Bardwell, J.C.; Buchner, J. Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J. Biol. Chem., 1995, 270(24), 14412-14419.
[33]
Garnier, C.; Barbier, P.; Gilli, R.; Lopez, C.; Peyrot, V.; Briand, C. Heat-shock protein 90 (hsp90) binds in vitro to tubulin dimer and inhibits microtubule formation. Biochem. Biophys. Res. Commun., 1998, 250(2), 414-419.
[34]
Chadli, A.; Ladjimi, M.M.; Baulieu, E.E.; Catelli, M.G. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J. Biol. Chem., 1999, 274(7), 4133-4139.
[35]
Moullintraffort, L.; Bruneaux, M.; Nazabal, A.; Allegro, D.; Giudice, E.; Zal, F.; Peyrot, V.; Barbier, P.; Thomas, D.; Garnier, C. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers. J. Biol. Chem., 2010, 285(20), 15100-15110.
[36]
Lee, C.C.; Lin, T.W.; Ko, T.P.; Wang, A.H. The hexameric structures of human heat shock protein 90. PLoS One, 2011, 6(5), e19961.
[37]
Richter, K.; Soroka, J.; Skalniak, L.; Leskovar, A.; Hessling, M.; Reinstein, J.; Buchner, J. Conserved conformational changes in the ATPase cycle of human Hsp90. J. Biol. Chem., 2008, 283(26), 17757-17765.
[38]
Pullen, L.; Bolon, D.N. Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo. J. Biol. Chem., 2011, 286(13), 11091-11098.
[39]
Yonehara, M.; Minami, Y.; Kawata, Y.; Nagai, J.; Yahara, I. Heat-induced chaperone activity of HSP90. J. Biol. Chem., 1996, 271(5), 2641-2645.
[40]
Cha, J.Y.; Ahn, G.; Kim, J.Y.; Kang, S.B.; Kim, M.R.; Su’udi, M.; Kim, W.Y.; Son, D. Structural and functional differences of cytosolic 90-kDa heat-shock proteins (Hsp90s) in Arabidopsis thaliana. Plant Physiol. Biochem., 2013, 70, 368-373.
[41]
Schirmer, C.; Lepvrier, E.; Duchesne, L.; Decaux, O.; Thomas, D.; Delamarche, C.; Garnier, C. Hsp90 directly interacts, in vitro, with amyloid structures and modulates their assembly and disassembly. Biochim. Biophys. Acta, 2016, 1860(11 Pt A), 2598-2609.
[42]
Lepvrier, E.; Moullintraffort, L.; Nigen, M.; Goude, R.; Allegro, D.; Barbier, P.; Peyrot, V.; Thomas, D.; Nazabal, A.; and Garnier, C. Hsp90 oligomers interacting with the aha1 cochaperone: An outlook for the Hsp90 chaperone machineries. Anal. Chem., 2015, 87(14), 7043-7051.
[43]
Lepvrier, E.; Nigen, M.; Moullintraffort, L.; Chat, S.; Allegro, D.; Barbier, P.; Thomas, D.; Nazabal, A.; Garnier, C. Hsp90 oligomerization process: How can p23 drive the chaperone machineries? Biochim. Biophys. Acta, 2015, 1854(10 Pt A), 1412-1424.
[44]
Mayer, M.P.; Nikolay, R.; Bukau, B. Aha, another regulator for hsp90 chaperones. Mol. Cell, 2002, 10(6), 1255-1256.
[45]
Lotz, G.P.; Lin, H.; Harst, A.; Obermann, W.M. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J. Biol. Chem., 2003, 278(19), 17228-17235.
[46]
Seraphim, T.V.; Alves, M.M.; Silva, I.M.; Gomes, F.E.; Silva, K.P.; Murta, S.M.; Barbosa, L.R.; Borges, J.C. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. PLoS One, 2013, 8(6), e66822.
[47]
Koulov, A.V.; LaPointe, P.; Lu, B.; Razvi, A.; Coppinger, J.; Dong, M.Q.; Matteson, J.; Laister, R.; Arrowsmith, C.; Yates, J.R.; Balch, W.E. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol. Biol. Cell, 2010, 21(6), 871-884.
[48]
Blacklock, K.; Verkhivker, G.M. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: A computational study. PLoS One, 2013, 8(8), e71936.
[49]
Retzlaff, M.; Hagn, F.; Mitschke, L.; Hessling, M.; Gugel, F.; Kessler, H.; Richter, K.; Buchner, J. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol. Cell, 2010, 37(3), 344-354.
[50]
McLaughlin, S.H.; Sobott, F.; Yao, Z.P.; Zhang, W.; Nielsen, P.R.; Grossmann, J.G.; Laue, E.D.; Robinson, C.V.; Jackson, S.E. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J. Mol. Biol., 2006, 356(3), 746-758.
[51]
Karagoz, G.E.; Duarte, A.M.; Ippel, H.; Uetrecht, C.; Sinnige, T.; van Rosmalen, M.; Hausmann, J.; Heck, A.J.; Boelens, R.; Rudiger, S.G. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 580-585.
[52]
Harst, A.; Lin, H.; Obermann, W.M. Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem. J., 2005, 387(Pt 3), 789-796.
[53]
Alvira, S.; Cuellar, J.; Rohl, A.; Yamamoto, S.; Itoh, H.; Alfonso, C.; Rivas, G.; Buchner, J.; Valpuesta, J.M. Structural characterization of the substrate transfer mechanism in Hsp70/ Hsp90 folding machinery mediated by Hop. Nat. Commun., 2014, 5, 5484.