Review Article

环氧合酶-2抑制剂作为炎性疾病的治疗靶标

卷 26, 期 18, 2019

页: [3225 - 3241] 页: 17

弟呕挨: 10.2174/0929867325666180514112124

价格: $65

摘要

炎症在许多复杂疾病和病症的发展中起着至关重要的作用,包括自身免疫性疾病,代谢综合征,神经退行性疾病和心血管疾病。 前列腺素在炎症中起调节作用。 环氧合酶是催化花生四烯酸代谢和前列腺素合成的初始步骤,是炎症的主要介质。 组成型亚型COX-1和诱导型亚型COX-2的差异表达,以及发现COX-1是胃肠道表达的主要形式的发现,导致寻找作为抗炎药的COX-2选择性抑制剂 可能会减轻传统非甾体类抗炎药(NSAID)的胃肠道副作用的药物。 COX-2同工型主要在炎症细胞中表达,并在慢性和急性炎症中明显上调,成为许多药理抑制剂的关键靶标。 COX-2选择性抑制剂碰巧显示出与传统NSAID等效的功效,但它们减少了胃肠道副作用。 这篇综述将阐明选择性COX-2抑制及其与人类病理学相关性的最新发现,特别是在以长期炎症状态为特征的炎性病理中,包括自身免疫性疾病,代谢综合征,肥胖,动脉粥样硬化,神经退行性疾病,慢性阻塞性疾病 肺部疾病,关节炎,慢性炎症性肠病和心血管疾病。

关键词: 环氧合酶,COX抑制剂,炎症,白介素,天然化合物。 前列腺素。

[1]
Cicchitti, L.; Martelli, M.; Cerritelli, F. Chronic inflammatory disease and osteopathy: A systematic review. PLoS One, 2015, 10(3)e0121327
[http://dx.doi.org/10.1371/journal.pone.0121327] [PMID: 25781621]
[2]
Sun, S.; Ji, Y.; Kersten, S.; Qi, L. Mechanisms of inflammatory responses in obese adipose tissue. Annu. Rev. Nutr., 2012, 32, 261-286.
[http://dx.doi.org/10.1146/annurev-nutr-071811-150623] [PMID: 22404118]
[3]
Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2, d12-d26.
[http://dx.doi.org/10.2741/A171] [PMID: 9159205]
[4]
Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta, 1996, 1317(2), 84-94.
[http://dx.doi.org/10.1016/S0925-4439(96)00048-8] [PMID: 8950192]
[5]
Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[6]
Katori, M.; Majima, M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm. Res., 2000, 49(8), 367-392.
[http://dx.doi.org/10.1007/s000110050605] [PMID: 11028754]
[7]
Chandrasekharan, N.V.; Dai, H.; Roos, K.L.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13926-13931.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[8]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[9]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69, 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
[10]
Järving, R.; Järving, I.; Kurg, R.; Brash, A.R.; Samel, N. On the evolutionary origin of cyclooxygenase (COX) isozymes: characterization of marine invertebrate COX genes points to independent duplication events in vertebrate and invertebrate lineages. J. Biol. Chem., 2004, 279(14), 13624-13633.
[http://dx.doi.org/10.1074/jbc.M313258200] [PMID: 14732711]
[11]
Sanz, A.; Moreno, J.I.; Castresana, C. PIOX, a new pathogen-induced oxygenase with homology to animal cyclooxygenase. Plant Cell, 1998, 10(9), 1523-1537.
[http://dx.doi.org/10.1105/tpc.10.9.1523] [PMID: 9724698]
[12]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[13]
Kulmacz, R.J.; van der Donk, W.A.; Tsai, A.L. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog. Lipid Res., 2003, 42(5), 377-404.
[http://dx.doi.org/10.1016/S0163-7827(03)00023-7] [PMID: 12814642]
[14]
Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 97-120.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97] [PMID: 9597150]
[15]
Kujubu, D.A.; Fletcher, B.S.; Varnum, B.C.; Lim, R.W.; Herschman, H.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem., 1991, 266(20), 12866-12872.
[PMID: 1712772]
[16]
Xie, W.L.; Chipman, J.G.; Robertson, D.L.; Erikson, R.L.; Simmons, D.L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. USA, 1991, 88(7), 2692-2696.
[http://dx.doi.org/10.1073/pnas.88.7.2692] [PMID: 1849272]
[17]
Qin, N.; Zhang, S.P.; Reitz, T.L.; Mei, J.M.; Flores, C.M. Cloning, expression, and functional characterization of human cyclooxygenase-1 splicing variants: evidence for intron 1 retention. J. Pharmacol. Exp. Ther., 2005, 315(3), 1298-1305.
[http://dx.doi.org/10.1124/jpet.105.090944] [PMID: 16141368]
[18]
Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev., 2004, 56(3), 387-437.
[http://dx.doi.org/10.1124/pr.56.3.3] [PMID: 15317910]
[19]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50(Suppl.), S423-S428.
[20]
Trappe, T.A.; Liu, S.Z. Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J. Appl. Physiol., 2013, 115(6), 909-919.
[http://dx.doi.org/10.1152/japplphysiol.00061.2013] [PMID: 23539318]
[21]
Weinheimer, E.M.; Jemiolo, B.; Carroll, C.C.; Harber, M.P.; Haus, J.M.; Burd, N.A.; LeMoine, J.K.; Trappe, S.W.; Trappe, T.A. Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(6), R2241-R2248.
[http://dx.doi.org/10.1152/ajpregu.00718.2006] [PMID: 17322116]
[22]
Morita, I.; Schindler, M.; Regier, M.K.; Otto, J.C.; Hori, T.; DeWitt, D.L.; Smith, W.L. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J. Biol. Chem., 1995, 270(18), 10902-10908.
[http://dx.doi.org/10.1074/jbc.270.18.10902] [PMID: 7738031]
[23]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[24]
DeWitt, D.L. Cox-2-selective inhibitors: the new super aspirins. Mol. Pharmacol., 1999, 55(4), 625-631.
[PMID: 10101019]
[25]
Garavito, R.M.; Mulichak, A.M. The structure of mammalian cyclooxygenases. Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 183-206.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.141906] [PMID: 12574066]
[26]
Marnett, L.J.; Rowlinson, S.W.; Goodwin, D.C.; Kalgutkar, A.S.; Lanzo, C.A. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem., 1999, 274(33), 22903-22906.
[http://dx.doi.org/10.1074/jbc.274.33.22903] [PMID: 10438452]
[27]
Hermanson, D.J.; Gamble-George, J.C.; Marnett, L.J.; Patel, S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol. Sci., 2014, 35(7), 358-367.
[http://dx.doi.org/10.1016/j.tips.2014.04.006] [PMID: 24845457]
[28]
Xu, S.; Rouzer, C.A.; Marnett, L.J. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life, 2014, 66(12), 803-811.
[http://dx.doi.org/10.1002/iub.1334] [PMID: 25537198]
[30]
Schneider, C.; Pratt, D.A.; Porter, N.A.; Brash, A.R. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol., 2007, 14(5), 473-488.
[http://dx.doi.org/10.1016/j.chembiol.2007.04.007] [PMID: 17524979]
[31]
Tsai, A.L.; Palmer, G.; Wu, G.; Peng, S.; Okeley, N.M.; van der Donk, W.A.; Kulmacz, R.J. Structural characterization of arachidonyl radicals formed by aspirin-treated prostaglandin H synthase-2. J. Biol. Chem., 2002, 277(41), 38311-38321.
[http://dx.doi.org/10.1074/jbc.M206961200] [PMID: 12167656]
[32]
Tsai, A.L.; Kulmacz, R.J. Prostaglandin H synthase: resolved and unresolved mechanistic issues. Arch. Biochem. Biophys., 2010, 493(1), 103-124.
[http://dx.doi.org/10.1016/j.abb.2009.08.019] [PMID: 19728984]
[33]
Malkowski, M.G.; Ginell, S.L.; Smith, W.L.; Garavito, R.M. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science, 2000, 289(5486), 1933-1937.
[http://dx.doi.org/10.1126/science.289.5486.1933] [PMID: 10988074]
[34]
Laneuville, O.; Breuer, D.K.; Xu, N.; Huang, Z.H.; Gage, D.A.; Watson, J.T.; Lagarde, M.; DeWitt, D.L.; Smith, W.L. Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and -2. Formation of 12-hydroxy-(9Z, 13E/Z, 15Z)- octadecatrienoic acids from alpha-linolenic acid. J. Biol. Chem., 1995, 270(33), 19330-19336.
[http://dx.doi.org/10.1074/jbc.270.33.19330] [PMID: 7642610]
[35]
Marnett, L.J.; Kalgutkar, A.S. Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol. Sci., 1999, 20(11), 465-469.
[http://dx.doi.org/10.1016/S0165-6147(99)01385-1] [PMID: 10542447]
[36]
Kulmacz, R.J.; Wang, L.H. Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. J. Biol. Chem., 1995, 270(41), 24019-24023.
[http://dx.doi.org/10.1074/jbc.270.41.24019] [PMID: 7592599]
[37]
Tsai, Al.; Wu, G.; Palmer, G.; Bambai, B.; Koehn, J.A.; Marshall, P.J.; Kulmacz, R.J. Rapid kinetics of tyrosyl radical formation and heme redox state changes in prostaglandin H synthase-1 and -2. J. Biol. Chem., 1999, 274(31), 21695-21700.
[http://dx.doi.org/10.1074/jbc.274.31.21695] [PMID: 10419480]
[38]
Xiao, G.; Chen, W.; Kulmacz, R.J. Comparison of structural stabilities of prostaglandin H synthase-1 and -2. J. Biol. Chem., 1998, 273(12), 6801-6811.
[http://dx.doi.org/10.1074/jbc.273.12.6801] [PMID: 9506982]
[39]
Yuan, C.; Rieke, C.J.; Rimon, G.; Wingerd, B.A.; Smith, W.L. Partnering between monomers of cyclooxygenase-2 homodimers. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6142-6147.
[http://dx.doi.org/10.1073/pnas.0601805103] [PMID: 16606823]
[40]
Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry, 2009, 48(31), 7353-7355.
[http://dx.doi.org/10.1021/bi900999z] [PMID: 19603831]
[41]
Sharma, N.P.; Dong, L.; Yuan, C.; Noon, K.R.; Smith, W.L. Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol. Pharmacol., 2010, 77(6), 979-986.
[http://dx.doi.org/10.1124/mol.109.063115] [PMID: 20194532]
[42]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[43]
Kulmacz, R.J.; Lands, W.E. Prostaglandin H synthase. Stoichiometry of heme cofactor. J. Biol. Chem., 1984, 259(10), 6358-6363.
[PMID: 6427213]
[44]
Kulmacz, R.J.; Lands, W.E. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J. Biol. Chem., 1985, 260(23), 12572-12578.
[PMID: 3930499]
[45]
Dong, L.; Sharma, N.P.; Jurban, B.J.; Smith, W.L. Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer. J. Biol. Chem., 2013, 288(40), 28641-28655.
[http://dx.doi.org/10.1074/jbc.M113.505503] [PMID: 23955344]
[46]
Dong, L.; Vecchio, A.J.; Sharma, N.P.; Jurban, B.J.; Malkowski, M.G.; Smith, W.L. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. J. Biol. Chem., 2011, 286(21), 19035-19046.
[http://dx.doi.org/10.1074/jbc.M111.231969] [PMID: 21467029]
[47]
Yuan, C.; Sidhu, R.S.; Kuklev, D.V.; Kado, Y.; Wada, M.; Song, I.; Smith, W.L. Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. J. Biol. Chem., 2009, 284(15), 10046-10055.
[http://dx.doi.org/10.1074/jbc.M808634200] [PMID: 19218248]
[48]
Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem., 2010, 285(45), 34950-34959.
[http://dx.doi.org/10.1074/jbc.M110.162982] [PMID: 20810665]
[49]
Larsen, L.N.; Dahl, E.; Bremer, J. Peroxidative oxidation of leuco-dichlorofluorescein by prostaglandin H synthase in prostaglandin biosynthesis from polyunsaturated fatty acids. Biochim. Biophys. Acta, 1996, 1299(1), 47-53.
[http://dx.doi.org/10.1016/0005-2760(95)00188-3] [PMID: 8555252]
[50]
Malkowski, M.G.; Thuresson, E.D.; Lakkides, K.M.; Rieke, C.J.; Micielli, R.; Smith, W.L.; Garavito, R.M. Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1. J. Biol. Chem., 2001, 276(40), 37547-37555.
[http://dx.doi.org/10.1074/jbc.M105982200] [PMID: 11477109]
[51]
Rieke, C.J.; Mulichak, A.M.; Garavito, R.M.; Smith, W.L. The role of arginine 120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J. Biol. Chem., 1999, 274(24), 17109-17114.
[http://dx.doi.org/10.1074/jbc.274.24.17109] [PMID: 10358065]
[52]
Rowlinson, S.W.; Crews, B.C.; Lanzo, C.A.; Marnett, L.J. The binding of arachidonic acid in the cyclooxygenase active site of mouse prostaglandin endoperoxide synthase-2 (COX-2). A putative L-shaped binding conformation utilizing the top channel region. J. Biol. Chem., 1999, 274(33), 23305-23310.
[http://dx.doi.org/10.1074/jbc.274.33.23305] [PMID: 10438506]
[53]
Needleman, P.; Whitaker, M.O.; Wyche, A.; Watters, K.; Sprecher, H.; Raz, A. Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: pharmacological basis for a therapeutic approach. Prostaglandins, 1980, 19(1), 165-181.
[http://dx.doi.org/10.1016/0090-6980(80)90163-X] [PMID: 6247744]
[54]
Lagarde, M.; Drouot, B.; Guichardant, M.; Dechavanne, M. Uptake and effect on arachidonic acid oxygenation of some icosaenoic acids in human platelets. Biomed. Biochim. Acta, 1984, 43(8-9), S319-S322.
[PMID: 6097236]
[55]
Spector, A.A.; Kaduce, T.L.; Figard, P.H.; Norton, K.C.; Hoak, J.C.; Czervionke, R.L. Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells. J. Lipid Res., 1983, 24(12), 1595-1604.
[PMID: 6321621]
[56]
Dong, L.; Zou, H.; Yuan, C.; Hong, Y.H.; Kuklev, D.V.; Smith, W.L. Different fatty acids compete with arachidonic acid for binding to the allosteric or catalytic subunits of cyclooxygenases to regulate prostanoid synthesis. J. Biol. Chem., 2016, 291(8), 4069-4078.
[http://dx.doi.org/10.1074/jbc.M115.698001] [PMID: 26703471]
[57]
Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med., 2000, 192(8), 1197-1204.
[http://dx.doi.org/10.1084/jem.192.8.1197] [PMID: 11034610]
[58]
Smith, W.L. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem. Sci., 2008, 33(1), 27-37.
[http://dx.doi.org/10.1016/j.tibs.2007.09.013] [PMID: 18155912]
[59]
Holtzman, M.J.; Turk, J.; Shornick, L.P. Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. J. Biol. Chem., 1992, 267(30), 21438-21445.
[PMID: 1400457]
[60]
Lecomte, M.; Laneuville, O.; Ji, C.; DeWitt, D.L.; Smith, W.L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J. Biol. Chem., 1994, 269(18), 13207-13215.
[PMID: 8175750]
[61]
Chiang, N.; Gronert, K.; Clish, C.B.; O’Brien, J.A.; Freeman, M.W.; Serhan, C.N. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J. Clin. Invest., 1999, 104(3), 309-316.
[http://dx.doi.org/10.1172/JCI7016] [PMID: 10430612]
[62]
Chiang, N.; Takano, T.; Clish, C.B.; Petasis, N.A.; Tai, H.H.; Serhan, C.N. Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA4 ELISA. J. Pharmacol. Exp. Ther., 1998, 287(2), 779-790.
[PMID: 9808710]
[63]
Xiao, G.; Tsai, A.L.; Palmer, G.; Boyar, W.C.; Marshall, P.J.; Kulmacz, R.J. Analysis of hydroperoxide-induced tyrosyl radicals and lipoxygenase activity in aspirin-treated human prostaglandin H synthase-2. Biochemistry, 1997, 36(7), 1836-1845.
[http://dx.doi.org/10.1021/bi962476u] [PMID: 9048568]
[64]
Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361.
[http://dx.doi.org/10.1038/nri2294] [PMID: 18437155]
[65]
Zarghi, A.; Arfaei, S. Selective COX-2 Inhibitors: a review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[66]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[67]
Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br. J. Clin. Pharmacol., 2016, 82(4), 957-964.
[http://dx.doi.org/10.1111/bcp.13048] [PMID: 27317138]
[68]
Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem., 2010, 17(32), 3769-3805.
[http://dx.doi.org/10.2174/092986710793205408] [PMID: 20858219]
[69]
Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[70]
Hawkey, C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol., 2001, 15(5), 801-820.
[http://dx.doi.org/10.1053/bega.2001.0236] [PMID: 11566042]
[71]
White, W.B. Cardiovascular effects of the cyclooxygenase inhibitors. Hypertension, 2007, 49(3), 408-418.
[http://dx.doi.org/10.1161/01.HYP.0000258106.74139.25] [PMID: 17261646]
[72]
Sklyarov, A.Y.; Panasyuk, N.B.; Fomenko, I.S. Role of nitric oxide-synthase and cyclooxygenase/lipooxygenase systems in development of experimental ulcerative colitis. J. Physiol. Pharmacol., 2011, 62(1), 65-73.
[PMID: 21451211]
[73]
Martín, A.R.; Villegas, I.; Alarcón de la Lastra, C. The COX-2 inhibitor, rofecoxib, ameliorates dextran sulphate sodium induced colitis in mice. Inflamm. Res., 2005, 54(4), 145-151.
[http://dx.doi.org/10.1007/s00011-004-1337-2] [PMID: 15883736]
[74]
Gornet, J.M.; Hassani, Z.; Modiglian, R.; Lémann, M. Exacerbation of Crohn’s colitis with severe colonic hemorrhage in a patient on rofecoxib. Am. J. Gastroenterol., 2002, 97(12), 3209-3210.
[http://dx.doi.org/10.1111/j.1572-0241.2002.07142.x] [PMID: 12492220]
[75]
Matuk, R.; Crawford, J.; Abreu, M.T.; Targan, S.R.; Vasiliauskas, E.A.; Papadakis, K.A. The spectrum of gastrointestinal toxicity and effect on disease activity of selective cyclooxygenase-2 inhibitors in patients with inflammatory bowel disease. Inflamm. Bowel Dis., 2004, 10(4), 352-356.
[http://dx.doi.org/10.1097/00054725-200407000-00005] [PMID: 15475742]
[76]
Miao, X.P.; Ouyang, Q.; Li, H.Y.; Wen, Z.H.; Zhang, D.K.; Cui, X.Y. Role of selective cyclooxygenase-2 inhibitors in exacerbation of inflammatory bowel disease: A systematic review and meta-analysis. Curr. Ther. Res. Clin. Exp., 2008, 69(3), 181-191.
[http://dx.doi.org/10.1016/j.curtheres.2008.06.009] [PMID: 24692797]
[77]
Bijlsma, J.W.; Knahr, K. Strategies for the prevention and management of osteoarthritis of the hip and knee. Best Pract. Res. Clin. Rheumatol., 2007, 21(1), 59-76.
[http://dx.doi.org/10.1016/j.berh.2006.08.013] [PMID: 17350544]
[78]
de Boer, T.N.; Huisman, A.M.; Polak, A.A.; Niehoff, A.G.; van Rinsum, A.C.; Saris, D.; Bijlsma, J.W.; Lafeber, F.J.; Mastbergen, S.C. The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment. Osteoarthritis Cartilage, 2009, 17(4), 482-488.
[http://dx.doi.org/10.1016/j.joca.2008.09.002] [PMID: 18926729]
[79]
Ding, C.; Cicuttini, F.; Jones, G. Do NSAIDs affect longitudinal changes in knee cartilage volume and knee cartilage defects in older adults? Am. J. Med., 2009, 122(9), 836-842.
[http://dx.doi.org/10.1016/j.amjmed.2009.03.022] [PMID: 19699379]
[80]
Raynauld, J.P.; Martel-Pelletier, J.; Beaulieu, A.; Bessette, L.; Morin, F.; Choquette, D.; Haraoui, B.; Abram, F.; Pelletier, J.P. An open-label pilot study evaluating by magnetic resonance imaging the potential for a disease-modifying effect of celecoxib compared to a modelized historical control cohort in the treatment of knee osteoarthritis. Semin. Arthritis Rheum., 2010, 40(3), 185-192.
[http://dx.doi.org/10.1016/j.semarthrit.2009.10.003] [PMID: 20132966]
[81]
Sawitzke, A.D.; Shi, H.; Finco, M.F.; Dunlop, D.D.; Bingham, C.O., III; Harris, C.L.; Singer, N.G.; Bradley, J.D.; Silver, D.; Jackson, C.G.; Lane, N.E.; Oddis, C.V.; Wolfe, F.; Lisse, J.; Furst, D.E.; Reda, D.J.; Moskowitz, R.W.; Williams, H.J.; Clegg, D.O. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum., 2008, 58(10), 3183-3191.
[http://dx.doi.org/10.1002/art.23973] [PMID: 18821708]
[82]
Alvarez-Soria, M.A.; Largo, R.; Santillana, J.; Sánchez-Pernaute, O.; Calvo, E.; Hernández, M.; Egido, J.; Herrero-Beaumont, G. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann. Rheum. Dis., 2006, 65(8), 998-1005.
[http://dx.doi.org/10.1136/ard.2005.046920] [PMID: 16476713]
[83]
Sanchez, C.; Mateus, M.M.; Defresne, M.P.; Crielaard, J.M.; Reginster, J.Y.; Henrotin, Y.E. Metabolism of human articular chondrocytes cultured in alginate beads. Longterm effects of interleukin 1beta and nonsteroidal antiinflammatory drugs. J. Rheumatol., 2002, 29(4), 772-782.
[PMID: 11950021]
[84]
Katagiri, M.; Ogasawara, T.; Hoshi, K.; Chikazu, D.; Kimoto, A.; Noguchi, M.; Sasamata, M.; Harada, S.; Akama, H.; Tazaki, H.; Chung, U.I.; Takato, T.; Nakamura, K.; Kawaguchi, H. Suppression of adjuvant-induced arthritic bone destruction by cyclooxygenase-2 selective agents with and without inhibitory potency against carbonic anhydrase II. J. Bone Miner. Res., 2006, 21(2), 219-227.
[http://dx.doi.org/10.1359/JBMR.051025] [PMID: 16418777]
[85]
Noguchi, M.; Kimoto, A.; Kobayashi, S.; Yoshino, T.; Miyata, K.; Sasamata, M. Effect of celecoxib, a cyclooxygenase-2 inhibitor, on the pathophysiology of adjuvant arthritis in rat. Eur. J. Pharmacol., 2005, 513(3), 229-235.
[http://dx.doi.org/10.1016/j.ejphar.2005.01.058] [PMID: 15862805]
[86]
Tsuboi, H.; Nampei, A.; Matsui, Y.; Hashimoto, J.; Kawai, S.; Ochi, T.; Yoshikawa, H. Celecoxib prevents juxta-articular osteopenia and growth plate destruction adjacent to inflamed joints in rats with collagen-induced arthritis. Mod. Rheumatol., 2007, 17(2), 115-122.
[http://dx.doi.org/10.3109/s10165-007-0552-4] [PMID: 17437166]
[87]
Hochberg, M.C. Treatment of rheumatoid arthritis and osteoarthritis with COX-2-selective inhibitors: a managed care perspective. Am. J. Manag. Care, 2002, 8(17)(Suppl.), S502-S517.
[PMID: 12458820]
[88]
Shen, H.; Sprott, H.; Aeschlimann, A.; Gay, R.E.; Michel, B.A.; Gay, S.; Sprott, H. Analgesic action of acetaminophen in symptomatic osteoarthritis of the knee. Rheumatology (Oxford), 2006, 45(6), 765-770.
[http://dx.doi.org/10.1093/rheumatology/kei253] [PMID: 16449370]
[89]
Theiler, R.; Bischoff, H.A.; Good, M.; Uebelhart, D. Rofecoxib improves quality of life in patients with hip or knee osteoarthritis. Swiss Med. Wkly., 2002, 132(39-40), 566-573.
[PMID: 12571763]
[90]
Yamagata, K.; Andreasson, K.I.; Kaufmann, W.E.; Barnes, C.A.; Worley, P.F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron, 1993, 11(2), 371-386.
[http://dx.doi.org/10.1016/0896-6273(93)90192-T] [PMID: 8352945]
[91]
Oliveira, M.S.; Furian, A.F.; Royes, L.F.; Fighera, M.R.; Fiorenza, N.G.; Castelli, M.; Machado, P.; Bohrer, D.; Veiga, M.; Ferreira, J.; Cavalheiro, E.A.; Mello, C.F. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res., 2008, 79(1), 14-21.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.12.008] [PMID: 18255268]
[92]
Akula, K.K.; Dhir, A.; Kulkarni, S.K. Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: possible involvement of adenosinergic mechanism. Epilepsy Res., 2008, 78(1), 60-70.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.10.008] [PMID: 18054463]
[93]
Claycomb, R.J.; Hewett, S.J.; Hewett, J.A. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia, 2011, 52(2), 273-283.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02889.x] [PMID: 21219314]
[94]
Krymchantowski, A.V.; Bigal, M.E. Rofecoxib in migraine. Expert Rev. Neurother., 2005, 5(1), 55-61.
[http://dx.doi.org/10.1586/14737175.5.1.55] [PMID: 15853474]
[95]
Aisen, P.S.; Thal, L.J.; Ferris, S.H.; Assaid, C.; Nessly, M.L.; Giuliani, M.J.; Lines, C.R.; Norman, B.A.; Potter, W.Z. Rofecoxib in patients with mild cognitive impairment: further analyses of data from a randomized, double-blind, trial. Curr. Alzheimer Res., 2008, 5(1), 73-82.
[http://dx.doi.org/10.2174/156720508783884602] [PMID: 18288935]
[96]
Aisen, P.S. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J. Pain Symptom Manage., 2002, 23(4)(Suppl.), S35-S40.
[http://dx.doi.org/10.1016/S0885-3924(02)00374-3] [PMID: 11992749]
[97]
Cakała, M.; Malik, A.R.; Strosznajder, J.B. Inhibitor of cyclooxygenase-2 protects against amyloid beta peptide-evoked memory impairment in mice. Pharmacol. Rep., 2007, 59(2), 164-172.
[PMID: 17556794]
[98]
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 2004, 63(9), 901-910.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[99]
Nivsarkar, M.; Banerjee, A.; Padh, H. Cyclooxygenase inhibitors: a novel direction for Alzheimer’s management. Pharmacol. Rep., 2008, 60(5), 692-698.
[PMID: 19066416]
[100]
Reines, S.A.; Block, G.A.; Morris, J.C.; Liu, G.; Nessly, M.L.; Lines, C.R.; Norman, B.A.; Baranak, C.C. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, 2004, 62(1), 66-71.
[http://dx.doi.org/10.1212/WNL.62.1.66] [PMID: 14718699]
[101]
Breitner, J.C.; Baker, L.D.; Montine, T.J.; Meinert, C.L.; Lyketsos, C.G.; Ashe, K.H.; Brandt, J.; Craft, S.; Evans, D.E.; Green, R.C.; Ismail, M.S.; Martin, B.K.; Mullan, M.J.; Sabbagh, M.; Tariot, P.N. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement., 2011, 7(4), 402-411.
[http://dx.doi.org/10.1016/j.jalz.2010.12.014] [PMID: 21784351]
[102]
Soininen, H.; West, C.; Robbins, J.; Niculescu, L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2007, 23(1), 8-21.
[http://dx.doi.org/10.1159/000096588] [PMID: 17068392]
[103]
Bourgain, R.H.; Six, F.; Andries, R. The action of cyclooxygenase and prostacyclin-synthetase inhibitors on platelet-vessel wall interaction. Artery, 1980, 8(1), 96-100.
[PMID: 6775620]
[104]
Lifschitz, M.D. Renal effects of nonsteroidal anti-inflammatory agents. J. Lab. Clin. Med., 1983, 102(3), 313-323.
[PMID: 6411840]
[105]
Tang, S.Y.; Monslow, J.; Todd, L.; Lawson, J.; Puré, E.; FitzGerald, G.A. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation, 2014, 129(17), 1761-1769.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007913] [PMID: 24519928]
[106]
Moran, A.E.; Roth, G.A.; Narula, J.; Mensah, G.A. 1990-2010 global cardiovascular disease atlas. Glob. Heart, 2014, 9(1), 3-16.
[http://dx.doi.org/10.1016/j.gheart.2014.03.1220] [PMID: 25432106]
[107]
Aw, T.J.; Haas, S.J.; Liew, D.; Krum, H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch. Intern. Med., 2005, 165(5), 490-496.
[http://dx.doi.org/10.1001/archinte.165.5.ioi50013] [PMID: 15710786]
[108]
Pope, J.E.; Anderson, J.J.; Felson, D.T. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch. Intern. Med., 1993, 153(4), 477-484.
[http://dx.doi.org/10.1001/archinte.1993.00410040045007] [PMID: 8435027]
[109]
Harirforoosh, S.; Aghazadeh-Habashi, A.; Jamali, F. Extent of renal effect of cyclo-oxygenase-2-selective inhibitors is pharmacokinetic dependent. Clin. Exp. Pharmacol. Physiol., 2006, 33(10), 917-924.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04464.x] [PMID: 17002668]
[110]
Kohli, P.; Steg, P.G.; Cannon, C.P.; Smith, S.C., Jr; Eagle, K.A.; Ohman, E.M.; Alberts, M.J.; Hoffman, E.; Guo, J.; Simon, T.; Sorbets, E.; Goto, S.; Bhatt, D.L. NSAID use and association with cardiovascular outcomes in outpatients with stable atherothrombotic disease. Am J Med, 2014, 127, 53-60. e51
[http://dx.doi.org/10.1016/j.amjmed.2013.08.017]
[111]
Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med, 2000, 343, 1520-1528.1522 p following 1528.
[http://dx.doi.org/10.1056/NEJM20001123343210]
[112]
Bresalier, R.S.; Sandler, R.S.; Quan, H.; Bolognese, J.A.; Oxenius, B.; Horgan, K.; Lines, C.; Riddell, R.; Morton, D.; Lanas, A.; Konstam, M.A.; Baron, J.A. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med., 2005, 352(11), 1092-1102.
[http://dx.doi.org/10.1056/NEJMoa050493] [PMID: 15713943]
[113]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[114]
Cardiovascular and cerebrovascular events in the randomized, controlled Alzheimer’s Disease Anti-Inflammatory Prevention Trial (ADAPT). PLoS Clin. Trials, 2006, 1(7)e33
[http://dx.doi.org/10.1371/journal.pctr.0010033] [PMID: 17111043]
[115]
Solomon, S.D.; Pfeffer, M.A.; McMurray, J.J.; Fowler, R.; Finn, P.; Levin, B.; Eagle, C.; Hawk, E.; Lechuga, M.; Zauber, A.G.; Bertagnolli, M.M.; Arber, N.; Wittes, J. Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation, 2006, 114(10), 1028-1035.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.636746] [PMID: 16943394]
[116]
Kearney, P.M.; Baigent, C.; Godwin, J.; Halls, H.; Emberson, J.R.; Patrono, C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ, 2006, 332(7553), 1302-1308.
[http://dx.doi.org/10.1136/bmj.332.7553.1302] [PMID: 16740558]
[117]
White, W.B.; West, C.R.; Borer, J.S.; Gorelick, P.B.; Lavange, L.; Pan, S.X.; Weiner, E.; Verburg, K.M. Risk of cardiovascular events in patients receiving celecoxib: a meta-analysis of randomized clinical trials. Am. J. Cardiol., 2007, 99(1), 91-98.
[http://dx.doi.org/10.1016/j.amjcard.2006.07.069] [PMID: 17196469]
[118]
Asghar, W.; Jamali, F. The effect of COX-2-selective meloxicam on the myocardial, vascular and renal risks: a systematic review. Inflammopharmacology, 2015, 23(1), 1-16.
[http://dx.doi.org/10.1007/s10787-014-0225-9] [PMID: 25515365]
[119]
Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; Goss, P.; Halls, H.; Hawk, E.; Hawkey, C.; Hennekens, C.; Hochberg, M.; Holland, L.E.; Kearney, P.M.; Laine, L.; Lanas, A.; Lance, P.; Laupacis, A.; Oates, J.; Patrono, C.; Schnitzer, T.J.; Solomon, S.; Tugwell, P.; Wilson, K.; Wittes, J.; Baigent, C. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013, 382(9894), 769-779.
[http://dx.doi.org/10.1016/S0140-6736(13)60900-9] [PMID: 23726390]
[120]
Antman, E.M.; Bennett, J.S.; Daugherty, A.; Furberg, C.; Roberts, H.; Taubert, K.A. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation, 2007, 115(12), 1634-1642.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.181424] [PMID: 17325246]
[121]
Byun, E.B.; Sung, N.Y.; Byun, E.H.; Song, D.S.; Kim, J.K.; Park, J.H.; Song, B.S.; Park, S.H.; Lee, J.W.; Byun, M.W.; Kim, J.H. The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol., 2013, 15(2), 450-456.
[http://dx.doi.org/10.1016/j.intimp.2012.11.021] [PMID: 23261363]
[122]
Byun, E.B.; Sung, N.Y.; Park, J.N.; Yang, M.S.; Park, S.H.; Byun, E.H. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol., 2015, 25(2), 249-259.
[http://dx.doi.org/10.1016/j.intimp.2015.02.015] [PMID: 25701505]
[123]
Byun, E.B.; Sung, N.Y.; Yang, M.S.; Lee, B.S.; Song, D.S.; Park, J.N.; Kim, J.H.; Jang, B.S.; Choi, D.S.; Park, S.H.; Yu, Y.B.; Byun, E.H. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-κB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol., 2014, 74, 255-264.
[http://dx.doi.org/10.1016/j.fct.2014.08.019] [PMID: 25447760]
[124]
Chao, C.L.; Weng, C.S.; Chang, N.C.; Lin, J.S.; Kao, S.T.; Ho, F.M. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr. Res., 2010, 30(12), 858-864.
[http://dx.doi.org/10.1016/j.nutres.2010.10.011] [PMID: 21147369]
[125]
Endale, M.; Park, S.C.; Kim, S.; Kim, S.H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology, 2013, 218(12), 1452-1467.
[http://dx.doi.org/10.1016/j.imbio.2013.04.019] [PMID: 23735482]
[126]
Shin, J.S.; Yun, K.J.; Chung, K.S.; Seo, K.H.; Park, H.J.; Cho, Y.W.; Baek, N.I.; Jang, D.; Lee, K.T. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol., 2013, 53, 263-271.
[http://dx.doi.org/10.1016/j.fct.2012.12.013] [PMID: 23261679]
[127]
Su, K.Y.; Yu, C.Y.; Chen, Y.P.; Hua, K.F.; Chen, Y.L. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement. Altern. Med., 2014, 14, 21.
[http://dx.doi.org/10.1186/1472-6882-14-21] [PMID: 24417898]
[128]
Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. The Radical Scavenging activity and cytotoxicity of resveratrol, orcinol and 4-allylphenol and their inhibitory effects on cox-2 gene expression and Nf-kappab activation in RAW264.7 cells stimulated with Porphyromonas gingivalis-fimbriae. In Vivo, 2015, 29(3), 341-349.
[PMID: 25977379]
[129]
Lim, K.M.; Bae, S.; Koo, J.E.; Kim, E.S.; Bae, O.N.; Lee, J.Y. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester. Arch. Dermatol. Res., 2015, 307(3), 219-227.
[http://dx.doi.org/10.1007/s00403-014-1529-8] [PMID: 25501505]
[130]
Xiong, Y.; Chen, D.; Yu, C.; Lv, B.; Peng, J.; Wang, J.; Lin, Y. Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function. Mol. Nutr. Food Res., 2015, 59(5), 829-842.
[http://dx.doi.org/10.1002/mnfr.201400614] [PMID: 25655748]
[131]
Cam, A.; de Mejia, E.G. RGD-peptide lunasin inhibits Akt-mediated NF-κB activation in human macrophages through interaction with the αVβ3 integrin. Mol. Nutr. Food Res., 2012, 56(10), 1569-1581.
[http://dx.doi.org/10.1002/mnfr.201200301] [PMID: 22945510]
[132]
Feng, A.W.; Yu, C.; Mao, Q.; Li, N.; Li, Q.R.; Li, J.S. Berberine hydrochloride attenuates cyclooxygenase-2 expression in rat small intestinal mucosa during acute endotoxemia. Fitoterapia, 2011, 82(7), 976-982.
[http://dx.doi.org/10.1016/j.fitote.2011.05.013] [PMID: 21641970]
[133]
Kim, D.S.; Kim, S.J.; Kim, M.C.; Jeon, Y.D.; Um, J.Y.; Hong, S.H. The therapeutic effect of chelidonic acid on ulcerative colitis. Biol. Pharm. Bull., 2012, 35(5), 666-671.
[http://dx.doi.org/10.1248/bpb.35.666] [PMID: 22687399]
[134]
Fang, J.; Seki, T.; Tsukamoto, T.; Qin, H.; Yin, H.; Liao, L.; Nakamura, H.; Maeda, H. Protection from inflammatory bowel disease and colitis-associated carcinogenesis with 4-vinyl-2,6-dimethoxyphenol (canolol) involves suppression of oxidative stress and inflammatory cytokines. Carcinogenesis, 2013, 34(12), 2833-2841.
[http://dx.doi.org/10.1093/carcin/bgt309] [PMID: 24064222]
[135]
Wu, X.F.; Ouyang, Z.J.; Feng, L.L.; Chen, G.; Guo, W.J.; Shen, Y.; Wu, X.D.; Sun, Y.; Xu, Q. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone. Toxicol. Appl. Pharmacol., 2014, 281(1), 146-156.
[http://dx.doi.org/10.1016/j.taap.2014.10.002] [PMID: 25448682]
[136]
Jeon, Y.J.; Kim, B.H.; Kim, S.; Oh, I.; Lee, S.; Shin, J.; Kim, T.Y. Rhododendrin ameliorates skin inflammation through inhibition of NF-κB, MAPK, and PI3K/Akt signaling. Eur. J. Pharmacol., 2013, 714(1-3), 7-14.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.041] [PMID: 23764465]
[137]
Niu, X.; Wang, Y.; Li, W.; Mu, Q.; Li, H.; Yao, H.; Zhang, H. Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol., 2015, 24(2), 432-439.
[http://dx.doi.org/10.1016/j.intimp.2014.12.041] [PMID: 25596039]
[138]
Wu, S.Q.; Otero, M.; Unger, F.M.; Goldring, M.B.; Phrutivorapongkul, A.; Chiari, C.; Kolb, A.; Viernstein, H.; Toegel, S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J. Ethnopharmacol., 2011, 138(2), 364-372.
[http://dx.doi.org/10.1016/j.jep.2011.09.011] [PMID: 21963554]
[139]
Byun, M.W. Schizonepeta tenuifolia ethanol extract exerts anti-inflammatory activity through the inhibition of TLR4 signaling in lipopolysaccharide-stimulated macrophage cells. J. Med. Food, 2014, 17(3), 350-356.
[http://dx.doi.org/10.1089/jmf.2013.2928] [PMID: 24650252]
[140]
Lee, S.E.; Park, Y.S. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J. Ginseng Res., 2014, 38(1), 34-39.
[http://dx.doi.org/10.1016/j.jgr.2013.11.004] [PMID: 24558308]
[141]
Kim, S.J.; Kim, Y.G.; Kim, D.S.; Jeon, Y.D.; Kim, M.C.; Kim, H.L.; Kim, S.Y.; Jang, H.J.; Lee, B.C.; Hong, S.H.; Um, J.Y. Oldenlandia diffusa ameliorates dextran sulphate sodium-induced colitis through inhibition of NF-kappaB activation. Am. J. Chin. Med., 2011, 39(5), 957-969.
[http://dx.doi.org/10.1142/S0192415X11009330] [PMID: 21905285]
[142]
Song, M.; Park, H.J. Anti-inflammatory effect of Phellinus linteus grown on germinated brown rice on dextran sodium sulfate-induced acute colitis in mice and LPS-activated macrophages. J. Ethnopharmacol., 2014, 154(2), 311-318.
[http://dx.doi.org/10.1016/j.jep.2013.12.059] [PMID: 24495471]
[143]
Park, S.Y.; Neupane, G.P.; Lee, S.O.; Lee, J.S.; Kim, M.Y.; Kim, S.Y.; Park, B.C.; Park, Y.J.; Kim, J.A. Protective effects of Pogostemon cablin Bentham water extract on inflammatory cytokine expression in TNBS-induced colitis in rats. Arch. Pharm. Res., 2014, 37(2), 253-262.
[http://dx.doi.org/10.1007/s12272-013-0260-x] [PMID: 24166708]
[144]
Xu, B.L.; Zhang, G.J.; Ji, Y.B. Active components alignment of Gegenqinlian decoction protects ulcerative colitis by attenuating inflammatory and oxidative stress. J. Ethnopharmacol., 2015, 162, 253-260.
[http://dx.doi.org/10.1016/j.jep.2014.12.042] [PMID: 25557032]
[145]
Niu, X.; Li, Y.; Li, W.; Hu, H.; Yao, H.; Li, H.; Mu, Q. The anti-inflammatory effects of Caragana tangutica ethyl acetate extract. J. Ethnopharmacol., 2014, 152(1), 99-105.
[http://dx.doi.org/10.1016/j.jep.2013.12.026] [PMID: 24406787]
[146]
Yimam, M.; Lee, Y.C.; Kim, T.W.; Moore, B.; Jiao, P.; Hong, M.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Oh, J.S.; Cleveland, S.; Hyun, E.J.; Chu, M.; Jia, Q. Analgesic and anti-Inflammatory effect of UP3005, a botanical composition Containing two standardized extracts of Uncaria gambir and Morus alba. Pharmacognosy Res., 2015, 7(Suppl. 1), S39-S46.
[http://dx.doi.org/10.4103/0974-8490.157995] [PMID: 26109786]
[147]
Hayashi, S.; Ueno, N.; Murase, A.; Nakagawa, Y.; Takada, J. Novel acid-type cyclooxygenase-2 inhibitors: Design, synthesis, and structure-activity relationship for anti-inflammatory drug. Eur. J. Med. Chem., 2012, 50, 179-195.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.053] [PMID: 22373734]
[148]
Li, X.; Peng, F.; Xie, C.; Wu, W.; Han, X.; Chen, L. (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one ameliorates the collagen-arthritis via blocking ERK/JNK and NF-κB signaling pathway. Int. Immunopharmacol., 2013, 17(4), 1125-1133.
[http://dx.doi.org/10.1016/j.intimp.2013.10.001] [PMID: 24135236]
[149]
Xu, J.; Jia, Y.Y.; Chen, S.R.; Ye, J.T.; Bu, X.Z.; Hu, Y.; Ma, Y.Z.; Guo, J.L.; Liu, P.Q. (E)-1-(4-ethoxyphenyl)-3-(4-nitrophenyl)-prop-2-en-1-one suppresses LPS-induced inflammatory response through inhibition of NF-κB signaling pathway. Int. Immunopharmacol., 2013, 15(4), 743-751.
[http://dx.doi.org/10.1016/j.intimp.2013.02.024] [PMID: 23499680]
[150]
Srinivas, V.; Mohan, C.D.; Baburajeev, C.P.; Rangappa, S.; Jagadish, S.; Fuchs, J.E.; Sukhorukov, A.Y. Chandra; Mason, D.J.; Sharath Kumar, K.S.; Madegowda, M.; Bender, A.; Basappa; Rangappa, K.S. Synthesis and characterization of novel oxazines and demonstration that they specifically target cyclooxygenase 2. Bioorg. Med. Chem. Lett., 2015, 25(15), 2931-2936.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.047] [PMID: 26048794]
[151]
Carlson, N.G.; Rojas, M.A.; Redd, J.W.; Tang, P.; Wood, B.; Hill, K.E.; Rose, J.W. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J. Neuroinflammation, 2010, 7, 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]
[152]
Choi, Y.; Lee, M.K.; Lim, S.Y.; Sung, S.H.; Kim, Y.C. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br. J. Pharmacol., 2009, 156(6), 933-940.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00022.x] [PMID: 19298258]
[153]
Yoon, H.M.; Jang, K.J.; Han, M.S.; Jeong, J.W.; Kim, G.Y.; Lee, J.H.; Choi, Y.H. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp. Ther. Med., 2013, 5(3), 957-963.
[http://dx.doi.org/10.3892/etm.2013.895] [PMID: 23408713]
[154]
Park, M.Y.; Jung, Y.S.; Park, J.H.; Choi, Y.W.; Lee, J.; Kim, C.M.; Baek, J.U.; Choi, B.T.; Shin, H.K. PMC-12, a Prescription of traditional Korean medicine, improves amyloid beta-induced cognitive deficits through modulation of neuroinflammation. Evid. Based Complement. Alternat. Med., 2015.2015768049
[http://dx.doi.org/10.1155/2015/768049] [PMID: 25945111]
[155]
Lee, D.; Park, J.; Yoon, J.; Kim, M.Y.; Choi, H.Y.; Kim, H. Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. J. Ethnopharmacol., 2012, 139(1), 6-11.
[http://dx.doi.org/10.1016/j.jep.2011.05.024] [PMID: 21645606]
[156]
Khan, M.M.; Kempuraj, D.; Thangavel, R.; Zaheer, A. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem. Int., 2013, 62(4), 379-388.
[http://dx.doi.org/10.1016/j.neuint.2013.01.029] [PMID: 23391521]
[157]
Javed, H.; Vaibhav, K.; Ahmed, M.E.; Khan, A.; Tabassum, R.; Islam, F.; Safhi, M.M.; Islam, F. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J. Neurol. Sci., 2015, 348(1-2), 51-59.
[http://dx.doi.org/10.1016/j.jns.2014.10.044] [PMID: 25434716]
[158]
Kong, R.; Zhang, Y.; Zhang, S.; Liu, M.; Sun, W.; Xing, Y.; Guan, Y.; Han, C.; Liu, Z. Protective effect of ethanol extracts of the Chinese caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), on the experimental middle cerebral artery occlusion/reperfusion (MCAO/R) Model. Int. J. Med. Mushrooms, 2015, 17(10), 997-1003.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i10.90] [PMID: 26756191]
[159]
Engelhart, M.J.; Geerlings, M.I.; Ruitenberg, A.; van Swieten, J.C.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 2002, 287(24), 3223-3229.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[160]
Laurin, D.; Masaki, K.H.; Foley, D.J.; White, L.R.; Launer, L.J. Midlife dietary intake of antioxidants and risk of late-life incident dementia: The honolulu-asia aging study. Am. J. Epidemiol., 2004, 159(10), 959-967.
[http://dx.doi.org/10.1093/aje/kwh124] [PMID: 15128608]
[161]
White, L.R.; Petrovitch, H.; Ross, G.W.; Masaki, K.; Hardman, J.; Nelson, J.; Davis, D.; Markesbery, W. Brain aging and midlife tofu consumption. J. Am. Coll. Nutr., 2000, 19(2), 242-255.
[http://dx.doi.org/10.1080/07315724.2000.10718923] [PMID: 10763906]
[162]
Zhang, Q.; Piao, X.L.; Piao, X.S.; Lu, T.; Wang, D.; Kim, S.W. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol., 2011, 49(1), 61-69.
[http://dx.doi.org/10.1016/j.fct.2010.09.032] [PMID: 20932871]
[163]
Wu, J.; Chen, C.; Hu, X.; Cai, X.; Guan, Y.; Hu, H.; Wang, Q.; Chen, X.; Cai, B.; Jing, X. Suppressing cyclooxygenase-2 prevents nonalcoholic and inhibits apoptosis of hepatocytes that are involved in the Akt/p53 signal pathway. Biochem. Biophys. Res. Commun., 2016, 469(4), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.096] [PMID: 26723251]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy