Review Article

常染色体显性遗传多囊肾病的靶向治疗

卷 26, 期 17, 2019

页: [3081 - 3102] 页: 22

弟呕挨: 10.2174/0929867325666180508095654

价格: $65

摘要

背景:常染色体显性多囊肾病(ADPKD)是人类最常见的危及生命的遗传性疾病,约有500人受到影响。 ADPKD的特征在于肾脏中的囊肿生长导致进行性实质损伤,并且是大约10%需要血液透析或移植用于终末期肾病的患者的潜在病理学。 在ADPKD,polycystin-1和polycystin-2中突变的两种蛋白质形成位于初级纤毛和质膜上的复合物,以促进细胞中钙离子的释放。 目前还没有食品和药物管理局(FDA)批准的治疗方法来治愈或减缓疾病的进展。 啮齿动物ADPKD模型并不完全模仿人类疾病,因此临床前结果并不总能成功转化为临床。 此外,许多这些潜在疗法的毒性导致患者退出临床试验。 结果:在这里,我们回顾了用于治疗ADPKD的临床试验中的化合物,我们研究了使用肾靶向方法的可行性,有可能拓宽治疗窗口,降低治疗相关毒性并提高已证明活性的药物的功效 在动物模型中。 我们提出了将肾靶向治疗与目前治疗方案相结合的建议,以实现治疗ADPKD的综合方法。 结论:许多化合物目前正在进行ADPKD的临床试验,但到目前为止,还没有一种化合物被FDA批准用于治疗这种疾病。 患者可以从有效的药物治疗中受益,特别是如果它可以针对肾脏,并且集中精力继续关注这一目标。

关键词: 常染色体显性多囊肾病(ADPKD),肾脏特异性治疗,肾脏疾病,靶向治疗,多囊肾病,常染色体疾病。

[1]
Fliegauf, M.; Benzing, T.; Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 880-893.
[http://dx.doi.org/10.1038/nrm2278] [PMID: 17955020]
[2]
Iglesias, C.G.; Torres, V.E.; Offord, K.P.; Holley, K.E.; Beard, C.M.; Kurland, L.T. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935-1980. Am. J. Kidney Dis., 1983, 2(6), 630-639.
[http://dx.doi.org/10.1016/S0272-6386(83)80044-4] [PMID: 6846334]
[3]
Gabow, P.A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med., 1993, 329(5), 332-342.
[http://dx.doi.org/10.1056/NEJM199307293290508] [PMID: 8321262]
[4]
Parfrey, P.S.; Bear, J.C.; Morgan, J.; Cramer, B.C.; McManamon, P.J.; Gault, M.H.; Churchill, D.N.; Singh, M.; Hewitt, R.; Somlo, S. The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N. Engl. J. Med., 1990, 323(16), 1085-1090.
[http://dx.doi.org/10.1056/NEJM199010183231601] [PMID: 2215575]
[5]
McDonald, S.; Rangan, G. Polycystic kidney disease: Progression of polycystic kidney disease--a lack of progress? Nat. Rev. Nephrol., 2014, 10(9), 489-491.
[http://dx.doi.org/10.1038/nrneph.2014.138] [PMID: 25092149]
[6]
Wuthrich, R.P.; Kistler, A.D.; Rodriguez, D.; Kapoor, S.; Mei, C. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU), 2015.
[7]
Rossetti, S.; Consugar, M.B.; Chapman, A.B.; Torres, V.E.; Guay-Woodford, L.M.; Grantham, J.J.; Bennett, W.M.; Meyers, C.M.; Walker, D.L.; Bae, K.; Zhang, Q.J.; Thompson, P.A.; Miller, J.P.; Harris, P.C.; Consortium, C. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol., 2007, 18(7), 2143-2160.
[http://dx.doi.org/10.1681/ASN.2006121387] [PMID: 17582161]
[8]
Harris, P.C.; Thomas, S.; MacCarthy, A.B.; Stallings, R.L.; Breuning, M.H.; Jenne, D.E.; Fink, T.M.; Buckle, V.J.; Ratcliffe, P.J.; Ward, C.J. A large duplicated area in the polycystic kidney disease 1 (PKD1) region of chromosome 16 is prone to rearrangement. Genomics, 1994, 23(2), 321-330.
[http://dx.doi.org/10.1006/geno.1994.1507] [PMID: 7835880]
[9]
Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell, 1995, 81(2), 289-298.
[http://dx.doi.org/10.1016/0092-8674(95)90339-9] [PMID: 7736581]
[10]
Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; Kimberling, W.J.; Breuning, M.H.; Deltas, C.C.; Peters, D.J.; Somlo, S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science, 1996, 272(5266), 1339-1342.
[http://dx.doi.org/10.1126/science.272.5266.1339] [PMID: 8650545]
[11]
Hateboer, N.; Dijk, M.A.; Bogdanova, N.; Coto, E.; Saggar-Malik, A.K.; San Millan, J.L.; Torra, R.; Breuning, M.; Ravine, D. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet, 1999, 353(9147), 103-107.
[http://dx.doi.org/10.1016/S0140-6736(98)03495-3] [PMID: 10023895]
[12]
Cornec-Le Gall, E.; Audrézet, M.P.; Chen, J.M.; Hourmant, M.; Morin, M.P.; Perrichot, R.; Charasse, C.; Whebe, B.; Renaudineau, E.; Jousset, P.; Guillodo, M.P.; Grall-Jezequel, A.; Saliou, P.; Férec, C.; Le Meur, Y. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol., 2013, 24(6), 1006-1013.
[http://dx.doi.org/10.1681/ASN.2012070650] [PMID: 23431072]
[13]
Paul, B.M.; Consugar, M.B.; Ryan Lee, M.; Sundsbak, J.L.; Heyer, C.M.; Rossetti, S.; Kubly, V.J.; Hopp, K.; Torres, V.E.; Coto, E.; Clementi, M.; Bogdanova, N.; de Almeida, E.; Bichet, D.G.; Harris, P.C. Evidence of a third ADPKD locus is not supported by re-analysis of designated PKD3 families. Kidney Int., 2014, 85(2), 383-392.
[http://dx.doi.org/10.1038/ki.2013.227] [PMID: 23760289]
[14]
Porath, B.; Gainullin, V.G.; Cornec-Le Gall, E.; Dillinger, E.K.; Heyer, C.M.; Hopp, K.; Edwards, M.E.; Madsen, C.D.; Mauritz, S.R.; Banks, C.J.; Baheti, S.; Reddy, B.; Herrero, J.I.; Banales, J.M.; Hogan, M.C.; Tasic, V.; Watnick, T.J.; Chapman, A.B.; Vigneau, C.; Lavainne, F.; Audrezet, M.P.; Ferec, C.; Le Meur, Y.; Torres, V.E.H.P.o.P.K.D.G. Consortium for Radiologic Imaging Studies of Polycystic Kidney, D.; Harris, P.C., Mutations in GANAB, encoding the glucosidase IIalpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet., 2016, 98(6), 1193-1207.
[http://dx.doi.org/10.1016/j.ajhg.2016.05.004] [PMID: 27259053]
[15]
Boletta, A. Emerging evidence of a link between the polycystins and the mTOR pathways. PathoGenetics, 2009, 2(1), 6.
[http://dx.doi.org/10.1186/1755-8417-2-6] [PMID: 19863783]
[16]
Qian, F.; Germino, F.J.; Cai, Y.; Zhang, X.; Somlo, S.; Germino, G.G. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet., 1997, 16(2), 179-183.
[http://dx.doi.org/10.1038/ng0697-179] [PMID: 9171830]
[17]
Nauli, S.M.; Zhou, J. Polycystins and mechanosensation in renal and nodal cilia. BioEssays, 2004, 26(8), 844-856.
[http://dx.doi.org/10.1002/bies.20069] [PMID: 15273987]
[18]
Stayner, C.; Zhou, J. Polycystin channels and kidney disease. Trends Pharmacol. Sci., 2001, 22(11), 543-546.
[http://dx.doi.org/10.1016/S0165-6147(00)01832-0] [PMID: 11698076]
[19]
Qian, F.; Boletta, A.; Bhunia, A.K.; Xu, H.; Liu, L.; Ahrabi, A.K.; Watnick, T.J.; Zhou, F.; Germino, G.G. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16981-16986.
[http://dx.doi.org/10.1073/pnas.252484899] [PMID: 12482949]
[20]
Yu, S.; Hackmann, K.; Gao, J.; He, X.; Piontek, K.; García-González, M.A.; Menezes, L.F.; Xu, H.; Germino, G.G.; Zuo, J.; Qian, F. Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18688-18693.
[http://dx.doi.org/10.1073/pnas.0708217104] [PMID: 18003909]
[21]
Low, S.H.; Vasanth, S.; Larson, C.H.; Mukherjee, S.; Sharma, N.; Kinter, M.T.; Kane, M.E.; Obara, T.; Weimbs, T. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell, 2006, 10(1), 57-69.
[http://dx.doi.org/10.1016/j.devcel.2005.12.005] [PMID: 16399078]
[22]
Lal, M.; Song, X.; Pluznick, J.L.; Di Giovanni, V.; Merrick, D.M.; Rosenblum, N.D.; Chauvet, V.; Gottardi, C.J.; Pei, Y.; Caplan, M.J. Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum. Mol. Genet., 2008, 17(20), 3105-3117.
[http://dx.doi.org/10.1093/hmg/ddn208] [PMID: 18632682]
[23]
Braun, D.A.; Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol., 2017, 9(3), a028191.
[http://dx.doi.org/10.1101/cshperspect.a028191] [PMID: 27793968]
[24]
Reiter, J.F.; Leroux, M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol., 2017, 18(9), 533-547.
[http://dx.doi.org/10.1038/nrm.2017.60] [PMID: 28698599]
[25]
Shillingford, J.M.; Murcia, N.S.; Larson, C.H.; Low, S.H.; Hedgepeth, R.; Brown, N.; Flask, C.A.; Novick, A.C.; Goldfarb, D.A.; Kramer-Zucker, A.; Walz, G.; Piontek, K.B.; Germino, G.G.; Weimbs, T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA, 2006, 103(14), 5466-5471.
[http://dx.doi.org/10.1073/pnas.0509694103] [PMID: 16567633]
[26]
Olsan, E.E.; Mukherjee, S.; Wulkersdorfer, B.; Shillingford, J.M.; Giovannone, A.J.; Todorov, G.; Song, X.; Pei, Y.; Weimbs, T. Signal transducer and activator of transcription-6 (STAT6) inhibition suppresses renal cyst growth in polycystic kidney disease. Proc. Natl. Acad. Sci. USA, 2011, 108(44), 18067-18072.
[http://dx.doi.org/10.1073/pnas.1111966108] [PMID: 22025716]
[27]
Bhunia, A.K.; Piontek, K.; Boletta, A.; Liu, L.; Qian, F.; Xu, P.N.; Germino, F.J.; Germino, G.G. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell, 2002, 109(2), 157-168.
[http://dx.doi.org/10.1016/S0092-8674(02)00716-X] [PMID: 12007403]
[28]
Simons, M.; Gloy, J.; Ganner, A.; Bullerkotte, A.; Bashkurov, M.; Krönig, C.; Schermer, B.; Benzing, T.; Cabello, O.A.; Jenny, A.; Mlodzik, M.; Polok, B.; Driever, W.; Obara, T.; Walz, G. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet., 2005, 37(5), 537-543.
[http://dx.doi.org/10.1038/ng1552] [PMID: 15852005]
[29]
Kim, E.; Arnould, T.; Sellin, L.K.; Benzing, T.; Fan, M.J.; Grüning, W.; Sokol, S.Y.; Drummond, I.; Walz, G. The polycystic kidney disease 1 gene product modulates Wnt signaling. J. Biol. Chem., 1999, 274(8), 4947-4953.
[http://dx.doi.org/10.1074/jbc.274.8.4947] [PMID: 9988738]
[30]
Wallace, D.P. Cyclic AMP-mediated cyst expansion. Biochim. Biophys. Acta, 2011, 1812(10), 1291-1300.
[http://dx.doi.org/10.1016/j.bbadis.2010.11.005] [PMID: 21118718]
[31]
Yamaguchi, T.; Wallace, D.P.; Magenheimer, B.S.; Hempson, S.J.; Grantham, J.J.; Calvet, J.P. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem., 2004, 279(39), 40419-40430.
[http://dx.doi.org/10.1074/jbc.M405079200] [PMID: 15263001]
[32]
Pan, J.; Seeger-Nukpezah, T.; Golemis, E.A. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell. Mol. Life Sci., 2013, 70(11), 1849-1874.
[http://dx.doi.org/10.1007/s00018-012-1052-z] [PMID: 22782110]
[33]
Ferreira, F.M.; Watanabe, E.H.; Onuchic, L.F. Polycystic. Kidney Dis., 2015.
[34]
Lu, W.; Peissel, B.; Babakhanlou, H.; Pavlova, A.; Geng, L.; Fan, X.; Larson, C.; Brent, G.; Zhou, J. Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat. Genet., 1997, 17(2), 179-181.
[http://dx.doi.org/10.1038/ng1097-179] [PMID: 9326937]
[35]
Bae, K.; Park, B.; Sun, H.; Wang, J.; Tao, C.; Chapman, A.B.; Torres, V.E.; Grantham, J.J.; Mrug, M.; Bennett, W.M.; Flessner, M.F.; Landsittel, D.P.; Bae, K.T. Segmentation of individual renal cysts from MR images in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol., 2013, 8(7), 1089-1097.
[http://dx.doi.org/10.2215/CJN.10561012] [PMID: 23520042]
[36]
Reeders, S.T. Multilocus polycystic disease. Nat. Genet., 1992, 1(4), 235-237.
[http://dx.doi.org/10.1038/ng0792-235] [PMID: 1338768]
[37]
Wu, G.; D’Agati, V.; Cai, Y.; Markowitz, G.; Park, J.H.; Reynolds, D.M.; Maeda, Y.; Le, T.C.; Hou, H., Jr; Kucherlapati, R.; Edelmann, W.; Somlo, S. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell, 1998, 93(2), 177-188.
[http://dx.doi.org/10.1016/S0092-8674(00)81570-6] [PMID: 9568711]
[38]
Brasier, J.L.; Henske, E.P. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J. Clin. Invest., 1997, 99(2), 194-199.
[http://dx.doi.org/10.1172/JCI119147] [PMID: 9005987]
[39]
Pei, Y.; Watnick, T.; He, N.; Wang, K.; Liang, Y.; Parfrey, P.; Germino, G.; St George-Hyslop, P. Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol., 1999, 10(7), 1524-1529.
[PMID: 10405208]
[40]
Koptides, M.; Hadjimichael, C.; Koupepidou, P.; Pierides, A.; Constantinou Deltas, C. Germinal and somatic mutations in the PKD2 gene of renal cysts in autosomal dominant polycystic kidney disease. Hum. Mol. Genet., 1999, 8(3), 509-513.
[http://dx.doi.org/10.1093/hmg/8.3.509] [PMID: 9949210]
[41]
Watnick, T.; He, N.; Wang, K.; Liang, Y.; Parfrey, P.; Hefferton, D.; St George-Hyslop, P.; Germino, G.; Pei, Y. Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat. Genet., 2000, 25(2), 143-144.
[http://dx.doi.org/10.1038/75981] [PMID: 10835625]
[42]
Eccles, M.R.; Stayner, C.A. Polycystic kidney disease - where gene dosage counts. F1000Prime Rep., 2014, 6, 24.
[http://dx.doi.org/10.12703/P6-24] [PMID: 24765529]
[43]
Gallagher, A.R.; Germino, G.G.; Somlo, S. Molecular advances in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis., 2010, 17(2), 118-130.
[http://dx.doi.org/10.1053/j.ackd.2010.01.002] [PMID: 20219615]
[44]
Lantinga-van Leeuwen, I.S.; Dauwerse, J.G.; Baelde, H.J.; Leonhard, W.N.; van de Wal, A.; Ward, C.J.; Verbeek, S.; Deruiter, M.C.; Breuning, M.H.; de Heer, E.; Peters, D.J. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet., 2004, 13(24), 3069-3077.
[http://dx.doi.org/10.1093/hmg/ddh336] [PMID: 15496422]
[45]
Jiang, S.T.; Chiou, Y.Y.; Wang, E.; Lin, H.K.; Lin, Y.T.; Chi, Y.C.; Wang, C.K.; Tang, M.J.; Li, H. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. Am. J. Pathol., 2006, 168(1), 205-220.
[http://dx.doi.org/10.2353/ajpath.2006.050342] [PMID: 16400024]
[46]
Ward, C.J.; Turley, H.; Ong, A.C.; Comley, M.; Biddolph, S.; Chetty, R.; Ratcliffe, P.J.; Gattner, K.; Harris, P.C. Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc. Natl. Acad. Sci. USA, 1996, 93(4), 1524-1528.
[http://dx.doi.org/10.1073/pnas.93.4.1524] [PMID: 8643665]
[47]
Thivierge, C.; Kurbegovic, A.; Couillard, M.; Guillaume, R.; Coté, O.; Trudel, M. Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell. Biol., 2006, 26(4), 1538-1548.
[http://dx.doi.org/10.1128/MCB.26.4.1538-1548.2006] [PMID: 16449663]
[48]
Burtey, S.; Riera, M.; Ribe, E.; Pennekamp, P.; Passage, E.; Rance, R.; Dworniczak, B.; Fontés, M. Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol. Dial. Transplant., 2008, 23(4), 1157-1165.
[http://dx.doi.org/10.1093/ndt/gfm763] [PMID: 18048422]
[49]
McKenna, S.C.; Carpenter, J.L. Polycystic disease of the kidney and liver in the Cairn Terrier. Vet. Pathol., 1980, 17(4), 436-442.
[http://dx.doi.org/10.1177/030098588001700405] [PMID: 7385577]
[50]
McAloose, D.; Casal, M.; Patterson, D.F.; Dambach, D.M. Polycystic kidney and liver disease in two related West Highland White Terrier litters. Vet. Pathol., 1998, 35(1), 77-81.
[http://dx.doi.org/10.1177/030098589803500110] [PMID: 9545140]
[51]
Crowell, W.A.; Hubbell, J.J.; Riley, J.C. Polycystic renal disease in related cats. J. Am. Vet. Med. Assoc., 1979, 175(3), 286-288.
[PMID: 500456]
[52]
Eaton, K.A.; Biller, D.S.; DiBartola, S.P.; Radin, M.J.; Wellman, M.L. Autosomal dominant polycystic kidney disease in Persian and Persian-cross cats. Vet. Pathol., 1997, 34(2), 117-126.
[http://dx.doi.org/10.1177/030098589703400204] [PMID: 9066078]
[53]
Krotec, K.; Meyer, B.S.; Freeman, W.; Hamir, A.N. Congenital cystic disease of the liver, pancreas, and kidney in a nubian goat (Capra hircus). Vet. Pathol., 1996, 33(6), 708-710.
[http://dx.doi.org/10.1177/030098589603300612] [PMID: 8952032]
[54]
Johnstone, A.C.; Davidson, B.I.; Roe, A.R.; Eccles, M.R.; Jolly, R.D. Congenital polycystic kidney disease in lambs. N. Z. Vet. J., 2005, 53(5), 307-314.
[http://dx.doi.org/10.1080/00480169.2005.36565] [PMID: 16220122]
[55]
Stayner, C.; Poole, C.A.; McGlashan, S.R.; Pilanthananond, M.; Brauning, R.; Markie, D.; Lett, B.; Slobbe, L.; Chae, A.; Johnstone, A.C.; Jensen, C.G.; McEwan, J.C.; Dittmer, K.; Parker, K.; Wiles, A.; Blackburne, W.; Leichter, A.; Leask, M.; Pinnapureddy, A.; Jennings, M.; Horsfield, J.A.; Walker, R.J.; Eccles, M.R. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci. Rep., 2017, 7(1), 1601.
[http://dx.doi.org/10.1038/s41598-017-01519-4] [PMID: 28487520]
[56]
Nagao, S.; Kugita, M.; Yoshihara, D.; Yamaguchi, T. Animal models for human polycystic kidney disease. Exp. Anim., 2012, 61(5), 477-488.
[http://dx.doi.org/10.1538/expanim.61.477] [PMID: 23095811]
[57]
Mangos, S.; Lam, P.Y.; Zhao, A.; Liu, Y.; Mudumana, S.; Vasilyev, A.; Liu, A.; Drummond, I.A. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis. Model. Mech., 2010, 3(5-6), 354-365.
[http://dx.doi.org/10.1242/dmm.003194] [PMID: 20335443]
[58]
Paavola, J.; Schliffke, S.; Rossetti, S.; Kuo, I.Y.; Yuan, S.; Sun, Z.; Harris, P.C.; Torres, V.E.; Ehrlich, B.E. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J. Mol. Cell. Cardiol., 2013, 58, 199-208.
[http://dx.doi.org/10.1016/j.yjmcc.2013.01.015] [PMID: 23376035]
[59]
Lu, W.; Fan, X.; Basora, N.; Babakhanlou, H.; Law, T.; Rifai, N.; Harris, P.C.; Perez-Atayde, A.R.; Rennke, H.G.; Zhou, J. Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes. Nat. Genet., 1999, 21(2), 160-161.
[http://dx.doi.org/10.1038/5944] [PMID: 9988265]
[60]
Shillingford, J.M.; Piontek, K.B.; Germino, G.G.; Weimbs, T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol., 2010, 21(3), 489-497.
[http://dx.doi.org/10.1681/ASN.2009040421] [PMID: 20075061]
[61]
Pritchard, L.; Sloane-Stanley, J.A.; Sharpe, J.A.; Aspinwall, R.; Lu, W.; Buckle, V.; Strmecki, L.; Walker, D.; Ward, C.J.; Alpers, C.E.; Zhou, J.; Wood, W.G.; Harris, P.C. A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum. Mol. Genet., 2000, 9(18), 2617-2627.
[http://dx.doi.org/10.1093/hmg/9.18.2617] [PMID: 11063721]
[62]
Kurbegovic, A.; Côté, O.; Couillard, M.; Ward, C.J.; Harris, P.C.; Trudel, M. Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum. Mol. Genet., 2010, 19(7), 1174-1189.
[http://dx.doi.org/10.1093/hmg/ddp588] [PMID: 20053665]
[63]
Happé, H.; Peters, D.J. Translational research in ADPKD: lessons from animal models. Nat. Rev. Nephrol., 2014, 10(10), 587-601.
[http://dx.doi.org/10.1038/nrneph.2014.137] [PMID: 25137562]
[64]
Helal, I. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU), 2015.
[65]
Grantham, J.J.; Torres, V.E. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat. Rev. Nephrol., 2016, 12(11), 667-677.
[http://dx.doi.org/10.1038/nrneph.2016.135] [PMID: 27694979]
[66]
Grantham, J.J.; Torres, V.E.; Chapman, A.B.; Guay-Woodford, L.M.; Bae, K.T.; King, B.F., Jr; Wetzel, L.H.; Baumgarten, D.A.; Kenney, P.J.; Harris, P.C.; Klahr, S.; Bennett, W.M.; Hirschman, G.N.; Meyers, C.M.; Zhang, X.; Zhu, F.; Miller, J.P.; Investigators, C. Volume progression in polycystic kidney disease. N. Engl. J. Med., 2006, 354(20), 2122-2130.
[http://dx.doi.org/10.1056/NEJMoa054341] [PMID: 16707749]
[67]
Schrier, R.W. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2015, 372(10), 976-977.
[PMID: 25738676]
[68]
Torres, V.E.; Abebe, K.Z.; Chapman, A.B.; Schrier, R.W.; Braun, W.E.; Steinman, T.I.; Winklhofer, F.T.; Brosnahan, G.; Czarnecki, P.G.; Hogan, M.C.; Miskulin, D.C.; Rahbari-Oskoui, F.F.; Grantham, J.J.; Harris, P.C.; Flessner, M.F.; Moore, C.G.; Perrone, R.D. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2014, 371(24), 2267-2276.
[http://dx.doi.org/10.1056/NEJMoa1402686] [PMID: 25399731]
[69]
Huber, T.B.; Walz, G.; Kuehn, E.W. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int., 2011, 79(5), 502-511.
[http://dx.doi.org/10.1038/ki.2010.457] [PMID: 21085109]
[70]
Walz, G.; Budde, K.; Mannaa, M.; Nürnberger, J.; Wanner, C.; Sommerer, C.; Kunzendorf, U.; Banas, B.; Hörl, W.H.; Obermüller, N.; Arns, W.; Pavenstädt, H.; Gaedeke, J.; Büchert, M.; May, C.; Gschaidmeier, H.; Kramer, S.; Eckardt, K.U. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2010, 363(9), 830-840.
[http://dx.doi.org/10.1056/NEJMoa1003491] [PMID: 20581392]
[71]
Grantham, J.J.; Bennett, W.M.; Perrone, R.D. mTOR inhibitors and autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2011, 364(3), 286-287.
[http://dx.doi.org/10.1056/NEJMc1010845] [PMID: 21247328]
[72]
Serra, A.L.; Poster, D.; Kistler, A.D.; Krauer, F.; Raina, S.; Young, J.; Rentsch, K.M.; Spanaus, K.S.; Senn, O.; Kristanto, P.; Scheffel, H.; Weishaupt, D.; Wüthrich, R.P. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2010, 363(9), 820-829.
[http://dx.doi.org/10.1056/NEJMoa0907419] [PMID: 20581391]
[73]
Myint, T.M.; Rangan, G.K.; Webster, A.C. Treatments to slow progression of autosomal dominant polycystic kidney disease: systematic review and meta-analysis of randomized trials. Nephrology (Carlton), 2014, 19(4), 217-226.
[http://dx.doi.org/10.1111/nep.12211] [PMID: 24460701]
[74]
Gattone, V.H., II; Wang, X.; Harris, P.C.; Torres, V.E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med., 2003, 9(10), 1323-1326.
[http://dx.doi.org/10.1038/nm935] [PMID: 14502283]
[75]
Torres, V.E.; Wang, X.; Qian, Q.; Somlo, S.; Harris, P.C.; Gattone, V.H., II Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med., 2004, 10(4), 363-364.
[http://dx.doi.org/10.1038/nm1004] [PMID: 14991049]
[76]
Wang, X.; Gattone, V., II; Harris, P.C.; Torres, V.E. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J. Am. Soc. Nephrol., 2005, 16(4), 846-851.
[http://dx.doi.org/10.1681/ASN.2004121090] [PMID: 15728778]
[77]
Irazabal, M.V.; Torres, V.E.; Hogan, M.C.; Glockner, J.; King, B.F.; Ofstie, T.G.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int., 2011, 80(3), 295-301.
[http://dx.doi.org/10.1038/ki.2011.119] [PMID: 21544064]
[78]
Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; Investigators, T.T. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2012, 367(25), 2407-2418.
[http://dx.doi.org/10.1056/NEJMoa1205511] [PMID: 23121377]
[79]
Torres, V.E.; Devuyst, O.; Chapman, A.B.; Gansevoort, R.T.; Perrone, R.D.; Ouyang, J.; Blais, J.D.; Czerwiec, F.S.; Sergeyeva, O.; Investigators, R.T. Rationale and design of a clinical trial investigating tolvaptan safety and efficacy in autosomal dominant polycystic kidney disease. Am. J. Nephrol., 2017, 45(3), 257-266.
[http://dx.doi.org/10.1159/000456087] [PMID: 28166521]
[80]
Otsuka, otsuka announces results of Phase 3 data on tolvaptan under development for ADPKD in U.S. Available at https://www.otsuka-us.com/discover/articles-10292017.
[81]
Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T. Perrone, Koch, G.; R.D.; Ouyang, J.; McQuade, R.D.; Blais, J.D.; Czerwiec, F.S.; Sergeyeva, O.; Investigators, R.T. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med., 2017, 377(20), 1930-1942.
[82]
Grantham, J.J. Therapy for polycystic kidney disease? It’s water, stupid! J. Am. Soc. Nephrol., 2008, 19(1), 1-7.
[http://dx.doi.org/10.1681/ASN.2007101100] [PMID: 18032792]
[83]
Nagao, S.; Nishii, K.; Katsuyama, M.; Kurahashi, H.; Marunouchi, T.; Takahashi, H.; Wallace, D.P. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J. Am. Soc. Nephrol., 2006, 17(8), 2220-2227.
[http://dx.doi.org/10.1681/ASN.2006030251] [PMID: 16807403]
[84]
El-Damanawi, R.; Harris, T.; Sandford, R.N.; Karet Frankl, F.E.; Hiemstra, T.F. Patient survey of current water Intake practices in autosomal dominant polycystic kidney disease: the SIPs survey. Clin. Kidney J., 2017, 10(3), 305-309.
[http://dx.doi.org/10.1093/ckj/sfw153] [PMID: 28616208]
[85]
Chang, M.Y.; Ong, A.C. New treatments for autosomal dominant polycystic kidney disease. Br. J. Clin. Pharmacol., 2013, 76(4), 524-535.
[PMID: 23594398]
[86]
Caroli, A.; Perico, N.; Perna, A.; Antiga, L.; Brambilla, P.; Pisani, A.; Visciano, B.; Imbriaco, M.; Messa, P.; Cerutti, R.; Dugo, M.; Cancian, L.; Buongiorno, E.; De Pascalis, A.; Gaspari, F.; Carrara, F.; Rubis, N.; Prandini, S.; Remuzzi, A.; Remuzzi, G.; Ruggenenti, P. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet, 2013, 382(9903), 1485-1495.
[http://dx.doi.org/10.1016/S0140-6736(13)61407-5] [PMID: 23972263]
[87]
Qian, Q.; Wang, H.Y. ALADIN: wish granted in inherited polycystic kidney disease? Lancet, 2013, 382(9903), 1469-1471.
[http://dx.doi.org/10.1016/S0140-6736(13)61541-X] [PMID: 23972262]
[88]
Pisani, A.; Sabbatini, M.; Imbriaco, M.; Riccio, E.; Rubis, N.; Prinster, A.; Perna, A.; Liuzzi, R.; Spinelli, L.; Santangelo, M.; Remuzzi, G.; Ruggenenti, P.; Group, A.S. Longterm effects of octreotide on liver volume in patients with polycystic kidney and liver disease. Clin. Gastroenterol Hepatol, 2016, 14(7), 1022-1030 e1024.
[89]
Meijer, E.; Drenth, J.P.; d’Agnolo, H.; Casteleijn, N.F.; de Fijter, J.W.; Gevers, T.J.; Kappert, P.; Peters, D.J.; Salih, M.; Soonawala, D.; Spithoven, E.M.; Torres, V.E.; Visser, F.W.; Wetzels, J.F.; Zietse, R.; Gansevoort, R.T.; Consortium, D. Rationale and design of the DIPAK 1 study: a randomized controlled clinical trial assessing the efficacy of lanreotide to Halt disease progression in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis., 2014, 63(3), 446-455.
[http://dx.doi.org/10.1053/j.ajkd.2013.10.011] [PMID: 24342522]
[90]
Ecder, T. Statins in the treatment of autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant., 2016, 31(8), 1194-1196.
[http://dx.doi.org/10.1093/ndt/gfv449] [PMID: 26908774]
[91]
Zafar, I.; Tao, Y.; Falk, S.; McFann, K.; Schrier, R.W.; Edelstein, C.L. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am. J. Physiol. Renal Physiol., 2007, 293(3), F854-F859.
[http://dx.doi.org/10.1152/ajprenal.00059.2007] [PMID: 17581927]
[92]
Zand, L.; Torres, V.E.; Larson, T.S.; King, B.F.; Sethi, S.; Bergstralh, E.J.; Angioi, A.; Fervenza, F.C. Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant., 2016, 31(8), 1290-1295.
[http://dx.doi.org/10.1093/ndt/gfv394] [PMID: 26614268]
[93]
Fassett, R.G.; Coombes, J.S.; Packham, D.; Fairley, K.F.; Kincaid-Smith, P. Effect of pravastatin on kidney function and urinary protein excretion in autosomal dominant polycystic kidney disease. Scand. J. Urol. Nephrol., 2010, 44(1), 56-61.
[http://dx.doi.org/10.3109/00365590903359908] [PMID: 20034362]
[94]
Cadnapaphornchai, M.A.; George, D.M.; McFann, K.; Wang, W.; Gitomer, B.; Strain, J.D.; Schrier, R.W. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol., 2014, 9(5), 889-896.
[http://dx.doi.org/10.2215/CJN.08350813] [PMID: 24721893]
[95]
Du, J.; Wilson, P.D. Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am. J. Physiol., 1995, 269(2 Pt 1), C487-C495.
[http://dx.doi.org/10.1152/ajpcell.1995.269.2.C487] [PMID: 7653531]
[96]
Patil, A.; Sweeney, W.E., Jr; Avner, E.D.; Pan, C. Polycystic Kidney Disease. Li, X., Ed.: Brisbane (AU),, 2015.
[97]
Sweeney, W.E., Jr; von Vigier, R.O.; Frost, P.; Avner, E.D. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol., 2008, 19(7), 1331-1341.
[http://dx.doi.org/10.1681/ASN.2007060665] [PMID: 18385429]
[98]
Tesar, V.; Ciechanowski, K.; Pei, Y.; Barash, I.; Shannon, M.; Li, R.; Williams, J.H.; Levisetti, M.; Arkin, S.; Serra, A. Bosutinib versus placebo for autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol., 2017, 28(11), 3404-3413.
[http://dx.doi.org/10.1681/ASN.2016111232] [PMID: 28838955]
[99]
Sweeney, W.E.; Frost, P.; Avner, E.D. Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease. World J. Nephrol., 2017, 6(4), 188-200.
[http://dx.doi.org/10.5527/wjn.v6.i4.188] [PMID: 28729967]
[100]
Yu, A.S.L.; El-Ters, M.; Winklhofer, F.T. In Polycystic Kidney Disease, Li, X., Ed.: Brisbane (AU). 2015.
[101]
Yu, A.S.; El-Ters, M.; Winklhofer, F.T. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU),, 2015.
[102]
Stayner, C.; Shields, J.; Slobbe, L.; Shillingford, J.M.; Weimbs, T.; Eccles, M.R. Rapamycin-mediated suppression of renal cyst expansion in del34 Pkd1-/- mutant mouse embryos: an investigation of the feasibility of renal cyst prevention in the foetus. Nephrology (Carlton), 2012, 17(8), 739-747.
[http://dx.doi.org/10.1111/j.1440-1797.2012.01639.x] [PMID: 22725947]
[103]
Wahl, P.R.; Serra, A.L.; Le Hir, M.; Molle, K.D.; Hall, M.N.; Wüthrich, R.P. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant., 2006, 21(3), 598-604.
[http://dx.doi.org/10.1093/ndt/gfi181] [PMID: 16221708]
[104]
O’Brien, L.L.; Guo, Q.; Lee, Y.; Tran, T.; Benazet, J.D.; Whitney, P.H.; Valouev, A.; McMahon, A.P. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development, 2016, 143(4), 595-608.
[http://dx.doi.org/10.1242/dev.127175] [PMID: 26884396]
[105]
Piontek, K.; Menezes, L.F.; Garcia-Gonzalez, M.A.; Huso, D.L.; Germino, G.G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med., 2007, 13(12), 1490-1495.
[http://dx.doi.org/10.1038/nm1675] [PMID: 17965720]
[106]
Canaud, G.; Knebelmann, B.; Harris, P.C.; Vrtovsnik, F.; Correas, J.M.; Pallet, N.; Heyer, C.M.; Letavernier, E.; Bienaimé, F.; Thervet, E.; Martinez, F.; Terzi, F.; Legendre, C. Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level? Am. J. Transplant., 2010, 10(7), 1701-1706.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03152.x] [PMID: 20642692]
[107]
Guler, S.; Cimen, S.; Hurton, S.; Molinari, M. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU),, 2015.
[108]
Zhou, P.; Sun, X.; Zhang, Z. Kidney-targeted drug delivery systems. Acta Pharm. Sin. B, 2014, 4(1), 37-42.
[http://dx.doi.org/10.1016/j.apsb.2013.12.005] [PMID: 26579362]
[109]
Deutscher, S.L.; Figueroa, S.D.; Kumar, S.R. Tumor targeting and SPECT imaging properties of an (111)In-labeled galectin-3 binding peptide in prostate carcinoma. Nucl. Med. Biol., 2009, 36(2), 137-146.
[http://dx.doi.org/10.1016/j.nucmedbio.2008.10.015] [PMID: 19217525]
[110]
Wang, S.; Luo, J.; Lantrip, D.A.; Waters, D.J.; Mathias, C.J.; Green, M.A.; Fuchs, P.L.; Low, P.S. Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug. Chem., 1997, 8(5), 673-679.
[http://dx.doi.org/10.1021/bc9701297] [PMID: 9327130]
[111]
Rangasamy, S.B.; Corbett, G.T.; Roy, A.; Modi, K.K.; Bennett, D.A.; Mufson, E.J.; Ghosh, S.; Pahan, K. Intranasal delivery of NEMO-binding domain peptide prevents memory loss in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2015, 47(2), 385-402.
[http://dx.doi.org/10.3233/JAD-150040] [PMID: 26401561]
[112]
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine (Lond.), 2015, 11(5), 1117-1132.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[113]
Suzuki, K.; Susaki, H.; Okuno, S.; Sugiyama, Y. Renal drug targeting using a vector “alkylglycoside”. J. Pharmacol. Exp. Ther., 1999, 288(1), 57-64.
[PMID: 9862753]
[114]
Lin, Y.; Sun, X.; Gong, T.; Zhang, Z.R. Prednisolone succinate-glucosamine conjugate: Synthesis, characterization and in vitro cellular uptake by kidney cell lines. Chin. Chem. Lett., 2012, 23(1), 25-28.
[http://dx.doi.org/10.1016/j.cclet.2011.07.023]
[115]
Liang, Z.; Gong, T.; Sun, X.; Tang, J.Z.; Zhang, Z.R. Chitosan oligomers as drug carriers for renal delivery of zidovudine. Carbohydr. Polym., 2012, 87(3), 2284-2290.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.060]
[116]
Su, M.; He, Q.; Zhang, Z.R.; Hu, B.; Liu, S.W. [Kidney-targeting characteristics of N-acetyl-L-glutamic prednisolone prodrug Yao Xue Xue Bao, 2003, 38(8), 627-630.
[PMID: 14628458]
[117]
Manil, L.; Davin, J.C.; Duchenne, C.; Kubiak, C.; Foidart, J.; Couvreur, P.; Mahieu, P. Uptake of nanoparticles by rat glomerular mesangial cells in vivo and in vitro. Pharm. Res., 1994, 11(8), 1160-1165.
[http://dx.doi.org/10.1023/A:1018993000633] [PMID: 7971718]
[118]
Choi, C.H.; Zuckerman, J.E.; Webster, P.; Davis, M.E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6656-6661.
[http://dx.doi.org/10.1073/pnas.1103573108] [PMID: 21464325]
[119]
Singh, M.; Ghose, T.; Faulkner, G.; Kralovec, J.; Mezei, M. Targeting of methotrexate-containing liposomes with a monoclonal antibody against human renal cancer. Cancer Res., 1989, 49(14), 3976-3984.
[PMID: 2660984]
[120]
Liang, B.; Shahbaz, M.; Wang, Y.; Gao, H.; Fang, R.; Niu, Z.; Liu, S.; Wang, B.; Sun, Q.; Niu, W.; Liu, E.; Wang, J.; Niu, J. Integrinβ6-targeted immunoliposomes mediate tumor-specific drug delivery and enhance therapeutic efficacy in colon carcinoma. Clin. Cancer Res., 2015, 21(5), 1183-1195.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1194] [PMID: 25549721]
[121]
Franssen, E.J.; Moolenaar, F.; de Zeeuw, D.; Meijer, D.K. Low molecular weight proteins as carriers for renal drug targeting: naproxen coupled to lysozyme via the spacer L-lactic acid. Pharm. Res., 1993, 10(7), 963-969.
[http://dx.doi.org/10.1023/A:1018946219057] [PMID: 8378258]
[122]
Kok, R.J.; Grijpstra, F.; Walthuis, R.B.; Moolenaar, F.; de Zeeuw, D.; Meijer, D.K. Specific delivery of captopril to the kidney with the prodrug captopril-lysozyme. J. Pharmacol. Exp. Ther., 1999, 288(1), 281-285.
[PMID: 9862782]
[123]
Zhang, Z.; Zheng, Q.; Han, J.; Gao, G.; Liu, J.; Gong, T.; Gu, Z.; Huang, Y.; Sun, X.; He, Q. The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials, 2009, 30(7), 1372-1381.
[http://dx.doi.org/10.1016/j.biomaterials.2008.11.035] [PMID: 19100618]
[124]
Dolman, M.E.; Harmsen, S.; Pieters, E.H.; Sparidans, R.W.; Lacombe, M.; Szokol, B.; Orfi, L.; Kéri, G.; Storm, G.; Hennink, W.E.; Kok, R.J. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. Int. J. Nanomedicine, 2012, 7, 417-433.
[PMID: 22334775]
[125]
Yuan, Z.X.; Li, J.J.; Zhu, D.; Sun, X.; Gong, T.; Zhang, Z.R. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J. Drug Target., 2011, 19(7), 540-551.
[http://dx.doi.org/10.3109/1061186X.2010.521158] [PMID: 21767121]
[126]
Yamamoto, Y.; Tsutsumi, Y.; Yoshioka, Y.; Kamada, H.; Sato-Kamada, K.; Okamoto, T.; Mukai, Y.; Shibata, H.; Nakagawa, S.; Mayumi, T. Poly(vinylpyrrolidone-co-dimethyl maleic acid) as a novel renal targeting carrier. J. Control. Release, 2004, 95(2), 229-237.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.017] [PMID: 14980771]
[127]
Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L.L.; Pepinsky, B.; Barsoum, J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA, 1994, 91(2), 664-668.
[http://dx.doi.org/10.1073/pnas.91.2.664] [PMID: 8290579]
[128]
Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 2001, 19(12), 1173-1176.
[http://dx.doi.org/10.1038/nbt1201-1173] [PMID: 11731788]
[129]
Kang, M.J.; Park, S.H.; Kang, M.H.; Park, M.J.; Choi, Y.W. Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int. J. Nanomedicine, 2013, 8, 1155-1165.
[PMID: 23515421]
[130]
Pan, L.; Liu, J.; He, Q.; Wang, L.; Shi, J. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34(11), 2719-2730.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.040] [PMID: 23337327]
[131]
Patel, A.; Patel, M.; Yang, X.; Mitra, A.K. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept. Lett., 2014, 21(11), 1102-1120.
[http://dx.doi.org/10.2174/0929866521666140807114240] [PMID: 25106908]
[132]
Zou, J.; Glinsky, V.V.; Landon, L.A.; Matthews, L.; Deutscher, S.L. Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis, 2005, 26(2), 309-318.
[http://dx.doi.org/10.1093/carcin/bgh329] [PMID: 15528216]
[133]
Geng, Q.; Sun, X.; Gong, T.; Zhang, Z.R. Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery. Bioconjug. Chem., 2012, 23(6), 1200-1210.
[http://dx.doi.org/10.1021/bc300020f] [PMID: 22663297]
[134]
Hogan, M.C.; Masyuk, T.V.; Page, L.; Holmes, D.R., III; Li, X.; Bergstralh, E.J.; Irazabal, M.V.; Kim, B.; King, B.F.; Glockner, J.F.; Larusso, N.F.; Torres, V.E. Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrol. Dial. Transplant., 2012, 27(9), 3532-3539.
[http://dx.doi.org/10.1093/ndt/gfs152] [PMID: 22773240]
[135]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[136]
Möller, G.P.; Müller, S.; Wolfstädter, B.T.; Wolfrum, S.; Schepmann, D.; Wünsch, B.; Carreira, E.M. Oxetanyl amino acids for peptidomimetics. Org. Lett., 2017, 19(10), 2510-2513.
[http://dx.doi.org/10.1021/acs.orglett.7b00745] [PMID: 28459595]
[137]
Zeier, M.; Jones, E.; Ritz, E. Autosomal dominant polycystic kidney disease--the patient on renal replacement therapy. Nephrol. Dial. Transplant., 1996, 11(Suppl. 6), 18-20.
[http://dx.doi.org/10.1093/ndt/11.supp6.18] [PMID: 9044322]
[138]
Belibi, F.; Zafar, I.; Ravichandran, K.; Segvic, A.B.; Jani, A.; Ljubanovic, D.G.; Edelstein, C.L. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol., 2011, 300(5), F1235-F1243.
[http://dx.doi.org/10.1152/ajprenal.00348.2010] [PMID: 21270095]
[139]
Hunter, F.W.; Wouters, B.G.; Wilson, W.R. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br. J. Cancer, 2016, 114(10), 1071-1077.
[http://dx.doi.org/10.1038/bjc.2016.79] [PMID: 27070712]
[140]
Woo, Y.M.; Bae, J.B.; Oh, Y.H.; Lee, Y.G.; Lee, M.J.; Park, E.Y.; Choi, J.K.; Lee, S.; Shin, Y.; Lyu, J.; Jung, H.Y.; Lee, Y.S.; Hwang, Y.H.; Kim, Y.J.; Park, J.H. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum. Genet., 2014, 133(3), 281-297.
[http://dx.doi.org/10.1007/s00439-013-1378-0] [PMID: 24129831]
[141]
Woo, Y.M.; Shin, Y.; Hwang, J.A.; Hwang, Y.H.; Lee, S.; Park, E.Y.; Kong, H.K.; Park, H.C.; Lee, Y.S.; Park, J.H. Epigenetic silencing of the MUPCDH gene as a possible prognostic biomarker for cyst growth in ADPKD. Sci. Rep., 2015, 5, 15238.
[http://dx.doi.org/10.1038/srep15238] [PMID: 26463459]
[142]
Hajarnis, S.; Lakhia, R.; Patel, V. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU), 2015.
[143]
Cao, Y.; Semanchik, N.; Lee, S.H.; Somlo, S.; Barbano, P.E.; Coifman, R.; Sun, Z. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21819-21824.
[http://dx.doi.org/10.1073/pnas.0911987106] [PMID: 19966229]
[144]
Xia, S.; Li, X.; Johnson, T.; Seidel, C.; Wallace, D.P.; Li, R. Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development, 2010, 137(7), 1075-1084.
[http://dx.doi.org/10.1242/dev.049437] [PMID: 20181743]
[145]
Fan, L.X.; Li, X.; Magenheimer, B.; Calvet, J.P.; Li, X. Inhibition of histone deacetylases targets the transcription regulator Id2 to attenuate cystic epithelial cell proliferation. Kidney Int., 2012, 81(1), 76-85.
[http://dx.doi.org/10.1038/ki.2011.296] [PMID: 21900881]
[146]
Qi, Y.; Wang, D.; Wang, D.; Jin, T.; Yang, L.; Wu, H.; Li, Y.; Zhao, J.; Du, F.; Song, M.; Wang, R. HEDD: the human epigenetic drug database. Database (Oxford), 2016.
[http://dx.doi.org/10.1093/database/baw159]
[147]
Jones, P.A.; Issa, J.P.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet., 2016, 17(10), 630-641.
[http://dx.doi.org/10.1038/nrg.2016.93] [PMID: 27629931]
[148]
Yheskel, M.; Patel, V. Therapeutic microRNAs in polycystic kidney disease. Curr. Opin. Nephrol. Hypertens., 2017, 26(4), 282-289.
[http://dx.doi.org/10.1097/MNH.0000000000000333] [PMID: 28399020]
[149]
Chapman, A.B.; Stepniakowski, K.; Rahbari-Oskoui, F. Hypertension in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis., 2010, 17(2), 153-163.
[http://dx.doi.org/10.1053/j.ackd.2010.01.001] [PMID: 20219618]
[150]
Schrier, R.W.; Johnson, A.M.; McFann, K.; Chapman, A.B. The role of parental hypertension in the frequency and age of diagnosis of hypertension in offspring with autosomal-dominant polycystic kidney disease. Kidney Int., 2003, 64(5), 1792-1799.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00264.x] [PMID: 14531813]
[151]
Zhang, Y.; Moran, A.E. Trends in the prevalence, awareness, treatment, and control of hypertension among young adults in the United States, 1999 to 2014. Hypertension, 2017, 70(4), 736-742.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09801] [PMID: 28847890]
[152]
Seeman, T.; Dusek, J.; Vondrichová, H.; Kyncl, M.; John, U.; Misselwitz, J.; Janda, J. Ambulatory blood pressure correlates with renal volume and number of renal cysts in children with autosomal dominant polycystic kidney disease. Blood Press. Monit., 2003, 8(3), 107-110.
[http://dx.doi.org/10.1097/00126097-200306000-00003] [PMID: 12900587]
[153]
Wühl, E.; Schaefer, F. Therapeutic strategies to slow chronic kidney disease progression. Pediatr. Nephrol., 2008, 23(5), 705-716.
[http://dx.doi.org/10.1007/s00467-008-0789-y] [PMID: 18335252]
[154]
de Miranda Henriques, M.S.; de Morais Villar, E.J. Polycystic Kidney Disease., Li, X., Ed.: Brisbane (AU), 2015.
[155]
Bae, K.T.; Zhu, F.; Chapman, A.B.; Torres, V.E.; Grantham, J.J.; Guay-Woodford, L.M.; Baumgarten, D.A.; King, B.F., Jr; Wetzel, L.H.; Kenney, P.J.; Brummer, M.E.; Bennett, W.M.; Klahr, S.; Meyers, C.M.; Zhang, X.; Thompson, P.A.; Miller, J.P. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin. J. Am. Soc. Nephrol., 2006, 1(1), 64-69.
[http://dx.doi.org/10.2215/CJN.00080605] [PMID: 17699192]
[156]
Chandok, N. Polycystic liver disease: a clinical review. Ann. Hepatol., 2012, 11(6), 819-826.
[PMID: 23109444]
[157]
Ruggenenti, P.; Remuzzi, A.; Ondei, P.; Fasolini, G.; Antiga, L.; Ene-Iordache, B.; Remuzzi, G.; Epstein, F.H. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int., 2005, 68(1), 206-216.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00395.x] [PMID: 15954910]
[158]
Ong, A.C. Screening for intracranial aneurysms in ADPKD. BMJ, 2009, 339, b3763.
[http://dx.doi.org/10.1136/bmj.b3763] [PMID: 19770180]
[159]
Pirson, Y.; Chauveau, D.; Torres, V. Management of cerebral aneurysms in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol., 2002, 13(1), 269-276.
[PMID: 11752048]
[160]
Sung, P.H.; Yang, Y.H.; Chiang, H.J.; Chiang, J.Y.; Chen, C.J.; Liu, C.T.; Yu, C.M.; Yip, H.K. Risk of aortic aneurysm and dissection in patients with autosomal-dominant polycystic kidney disease: a nationwide population-based cohort study. Oncotarget, 2017, 8(34), 57594-57604.
[http://dx.doi.org/10.18632/oncotarget.16338] [PMID: 28915698]
[161]
Aguiari, G.; Catizone, L.; Del Senno, L. Multidrug therapy for polycystic kidney disease: a review and perspective. Am. J. Nephrol., 2013, 37(2), 175-182.
[http://dx.doi.org/10.1159/000346812] [PMID: 23428809]
[162]
Hopp, K.; Hommerding, C.J.; Wang, X.; Ye, H.; Harris, P.C.; Torres, V.E. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J. Am. Soc. Nephrol., 2015, 26(1), 39-47.
[http://dx.doi.org/10.1681/ASN.2013121312] [PMID: 24994926]
[163]
Zhu, P.; Sieben, C.J.; Xu, X.; Harris, P.C.; Lin, X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum. Mol. Genet., 2017, 26(1), 158-172.
[PMID: 28007903]
[164]
Rysz, J.; Gluba-Brzózka, A.; Franczyk, B.; Banach, M.; Bartnicki, P. Combination drug versus monotherapy for the treatment of autosomal dominant polycystic kidney disease. Expert Opin. Pharmacother., 2016, 17(15), 2049-2056.
[http://dx.doi.org/10.1080/14656566.2016.1232394] [PMID: 27650472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy