Review Article

DNA功能化纳米粒子的研究进展与应用

卷 26, 期 40, 2019

页: [7147 - 7165] 页: 19

弟呕挨: 10.2174/0929867325666180501103620

价格: $65

摘要

DNA功能化纳米粒子(DfNP)技术是DNA与纳米技术的集成,根据生物技术方法,近几十年来已成为一种有前途的生物功能化工具。 DfNPs的发展已显示出对多种生物学和生物医学应用的巨大潜力。 在这篇综述中,我们着重研究一系列DNA-NP纳米复合材料的机理,并重点介绍基于DNA的NPs的超结构。 我们还总结了这些纳米复合材料在细胞成像,癌症治疗和生物分析检测中的应用。

关键词: DNA,纳米粒子,癌症治疗和成像,生物分析,生物功能化,生物医学应用

[1]
Oh, J.H.; Park, D.H.; Joo, J.H.; Lee, J.S. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal. Bioanal. Chem., 2015, 407(29), 8627-8645.
[http://dx.doi.org/10.1007/s00216-015-8981-y] [PMID: 26329278]
[2]
Samanta, A.; Medintz, I.L. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8(17), 9037-9095.
[http://dx.doi.org/10.1039/C5NR08465B] [PMID: 27080924]
[3]
Bose, R.J.; Lee, S.H.; Park, H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov. Today, 2016, 21(8), 1303-1312.
[http://dx.doi.org/10.1016/j.drudis.2016.06.005] [PMID: 27297732]
[4]
Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[5]
Avvakumova, S.; Colombo, M.; Tortora, P.; Prosperi, D. Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol., 2014, 32(1), 11-20.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.006] [PMID: 24182737]
[6]
Seeman, N.C. DNA in a material world. Nature, 2003, 421(6921), 427-431.
[http://dx.doi.org/10.1038/nature01406] [PMID: 12540916]
[7]
Bhatt, N.; Huang, P.J.; Dave, N.; Liu, J. Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents. Langmuir, 2011, 27(10), 6132-6137.
[http://dx.doi.org/10.1021/la200241d] [PMID: 21513322]
[8]
Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano, 2016, 10(11), 10245-10257.
[http://dx.doi.org/10.1021/acsnano.6b05760] [PMID: 27791364]
[9]
Wang, H.B.; Li, Y.; Bai, H.Y.; Liu, Y.M. DNA-templated Au nanoclusters and MnO2, sheets: a label-free and universal fluorescence biosensing platform. Sens. Actuators B Chem., 2018, 259(15), 204-210.
[http://dx.doi.org/10.1016/j.snb.2017.12.048]
[10]
Li, Z.; Liu, R.; Xing, G.; Wang, T.; Liu, S. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens. Bioelectron., 2017, 96(15), 44-48.
[http://dx.doi.org/10.1016/j.bios.2017.01.005] [PMID: 28460331]
[11]
Zhu, X.L.; Shi, H.; Shen, Y.L.; Zhang, B.; Zhao, J.; Li, G.X. A green method of staining DNA in polyacrylamide gel electrophoresis based on fluorescent copper nanoclusters synthesized in situ. Nano Res., 2015, 8(8), 2714-2720.
[http://dx.doi.org/10.1007/s12274-015-0778-y]
[12]
Alivisatos, A.P.; Johnsson, K.P.; Peng, X.; Wilson, T.E.; Loweth, C.J.; Bruchez, M.P., Jr; Schultz, P.G. Organization of ‘nanocrystal molecules’ using DNA. Nature, 1996, 382(6592), 609-611.
[http://dx.doi.org/10.1038/382609a0] [PMID: 8757130]
[13]
Su, Q.; Nöll, G. Influence of the thiol anchor on the orientation of surface-grafted dsDNA assemblies. Chemistry, 2017, 23(3), 696-702.
[http://dx.doi.org/10.1002/chem.201604652] [PMID: 27747950]
[14]
Ford, W.E.; Harnack, O.; Yasuda, A.; Wessels, J.M. Platinated DNA as precursors to templated chains of metal nanoparticles. Adv. Mater., 2001, 13(23), 1793-1797.
[http://dx.doi.org/10.1002/1521-4095(200112)13:23<1793:AID-ADMA1793>3.0.CO;2-V]
[15]
Bhatia, D.; Arumugam, S.; Nasilowski, M.; Joshi, H.; Wunder, C.; Chambon, V.; Prakash, V.; Grazon, C.; Nadal, B.; Maiti, P.K.; Johannes, L.; Dubertret, B.; Krishnan, Y. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol., 2016, 11(12), 1112-1119.
[http://dx.doi.org/10.1038/nnano.2016.150] [PMID: 27548358]
[16]
Zhao, W.; Chiuman, W.; Lam, J.C.; McManus, S.A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M.A.; Li, Y. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J. Am. Chem. Soc., 2008, 130(11), 3610-3618.
[http://dx.doi.org/10.1021/ja710241b] [PMID: 18293985]
[17]
Yeh, H.C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H.A. DNA--silver nanocluster probe that fluoresces upon hybridization. Nano Lett., 2010, 10(8), 3106-3110.
[http://dx.doi.org/10.1021/nl101773c] [PMID: 20698624]
[18]
Wang, L.; Shi, F.; Li, Y.; Su, X. An ultra-sensitive and label-free fluorescent probe for trypsin and inhibitor based on DNA hosted Cu nanoclusters. Sens. Actuators B Chem., 2016, 222, 945-951.
[http://dx.doi.org/10.1016/j.snb.2015.09.024]
[19]
Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc., 2004, 126(16), 5207-5212.
[http://dx.doi.org/10.1021/ja031931o] [PMID: 15099104]
[20]
Vosch, T.; Antoku, Y.; Hsiang, J.C.; Richards, C.I.; Gonzalez, J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12616-12621.
[http://dx.doi.org/10.1073/pnas.0610677104] [PMID: 17519337]
[21]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[22]
Takezawa, Y.; Shionoya, M. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. Acc. Chem. Res., 2012, 45(12), 2066-2076.
[http://dx.doi.org/10.1021/ar200313h] [PMID: 22452649]
[23]
Subramanian, R.H.; Smith, S.J.; Alberstein, R.G.; Bailey, J.B.; Zhang, L.; Cardone, G.; Suominen, L.; Chami, M.; Stahlberg, H.; Baker, T.S.; Tezcan, F.A. Self-assembly of a designed nucleoprotein architecture through multimodal interactions. ACS Cent. Sci., 2018, 4(11), 1578-1586.
[http://dx.doi.org/10.1021/acscentsci.8b00745] [PMID: 30555911]
[24]
Chou, L.Y.T.; Song, F.; Chan, W.C.W. Engineering the structure and properties of DNA-nanoparticle superstructures using polyvalent counterions. J. Am. Chem. Soc., 2016, 138(13), 4565-4572.
[http://dx.doi.org/10.1021/jacs.6b00751] [PMID: 26942662]
[25]
Vidal, B.C., Jr; Deivaraj, T.C.; Yang, J.; Too, H.P.; Chow, G.M.; Gane, L.M.; Lee, J.Y. Stability and hybridization-driven aggregation of silver nanoparticle-oligonucleotide conjugates. New J. Chem., 2005, 29(6), 812-816.
[http://dx.doi.org/10.1039/b417683a]
[26]
Zhang, H.; Lv, J.; Jia, Z. Efficient fluorescence resonance energy transfer between quantum dots and gold nanoparticles based on porous silicon photonic crystal for dna detection. Sensors (Basel), 2017, 17(5), 1078-1090.
[http://dx.doi.org/10.3390/s17051078] [PMID: 28489033]
[27]
Zhang, T.; Liedl, T. DNA-based assembly of quantum dots into dimers and helices. Nanomaterials, 2019, 9(3), 339.
[http://dx.doi.org/10.3390/nano9030339] [PMID: 30832359]
[28]
Sun, E.Z.; Liu, A.A.; Zhang, Z.L.; Liu, S.L.; Tian, Z.Q.; Pang, D.W. Real-time dissection of distinct dynamin-dependent endocytic routes of influenza a virus by quantum dot-based single-virus tracking. ACS Nano, 2017, 11(5), 4395-4406.
[http://dx.doi.org/10.1021/acsnano.6b07853] [PMID: 28355058]
[29]
Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z.P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X.E.; Cui, Z. Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages. ACS Nano, 2017, 11(4), 3890-3903.
[http://dx.doi.org/10.1021/acsnano.7b00275] [PMID: 28371581]
[30]
Shamsipur, M.; Nasirian, V.; Mansouri, K.; Barati, A.; Veisi-Raygani, A.; Kashanian, S. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal., 2017, 136(20), 140-147.
[http://dx.doi.org/10.1016/j.jpba.2017.01.002] [PMID: 28081500]
[31]
Walling, M.A.; Novak, J.A.; Shepard, J.R.E. Quantum dots for live cell and in vivo imaging. Int. J. Mol. Sci., 2009, 10(2), 441-491.
[http://dx.doi.org/10.3390/ijms10020441] [PMID: 19333416]
[32]
Chinnathambi, S.; Abu, N.; Hanagata, N. Biocompatible CdSe/ZnS quantum dot micelles for long-term cell imaging without alteration to the native structure of the blood plasma protein human serum albumin. RSC Advances, 2017, 7(7), 2392-2402.
[http://dx.doi.org/10.1039/C6RA26592H]
[33]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[34]
Wang, Z.; He, H.; Slough, W.; Pandey, R.; Karna, S.P. Nature of interaction between semiconducting nanostructures and biomolecules: chalcogenide QDs and BNNT with DNA molecules. J. Phys. Chem. C, 2015, 119(46), 25965-25973.
[http://dx.doi.org/10.1021/acs.jpcc.5b08084]
[35]
Wang, G.; Li, Z.; Ma, N. Next-generation DNA-functionalized quantum dots as biological sensors. ACS Chem. Biol., 2017, 13(7), 1705-1713.
[http://dx.doi.org/10.1021/acschembio.7b00887] [PMID: 29257662]
[36]
Gulzar, A.; Xu, J.; Yang, P.; He, F.; Xu, L. Upconversion processes: versatile biological applications and biosafety. Nanoscale, 2017, 9(34), 12248-12282.
[http://dx.doi.org/10.1039/c7nr01836c] [PMID: 28829477]
[37]
Li, R.; Ji, Z.; Dong, J.; Chang, C.H.; Wang, X.; Sun, B.; Wang, M.; Liao, Y.P.; Zink, J.I.; Nel, A.E.; Xia, T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano, 2015, 9(3), 3293-3306.
[http://dx.doi.org/10.1021/acsnano.5b00439] [PMID: 25727446]
[38]
Chatterjee, D.K.; Rufaihah, A.J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, 29(7), 937-943.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.051] [PMID: 18061257]
[39]
Li, R.; Ji, Z.; Chang, C.H.; Dunphy, D.R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong, J.; Lin, S.; Wang, M.; Liao, Y.P.; Brinker, C.J.; Nel, A.; Xia, T. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 2014, 8(2), 1771-1783.
[http://dx.doi.org/10.1021/nn406166n] [PMID: 24417322]
[40]
Tian, J.; Zeng, X.; Xie, X.; Han, S.; Liew, O.W.; Chen, Y.T.; Wang, L.; Liu, X. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles. J. Am. Chem. Soc., 2015, 137(20), 6550-6558.
[http://dx.doi.org/10.1021/jacs.5b00981] [PMID: 25923914]
[41]
Liu, B.; Chen, Y.; Li, C.; He, F.; Hou, Z.; Huang, S. Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv. Funct. Mater., 2015, 25(29), 4717-4729.
[http://dx.doi.org/10.1002/adfm.201501582]
[42]
Sun, Y.; Feng, W.; Yang, P.; Huang, C.; Li, F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev., 2015, 44(6), 1509-1525.
[http://dx.doi.org/10.1039/C4CS00175C] [PMID: 25113504]
[43]
Liu, J.; Bu, W.; Zhang, S.; Chen, F.; Xing, H.; Pan, L.; Zhou, L.; Peng, W.; Shi, J. Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry, 2012, 18(8), 2335-2341.
[http://dx.doi.org/10.1002/chem.201102599] [PMID: 22252972]
[44]
Li, L.L.; Wu, P.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc., 2013, 135(7), 2411-2414.
[http://dx.doi.org/10.1021/ja310432u] [PMID: 23356394]
[45]
Lu, J.; Chen, Y.; Liu, D.; Ren, W.; Lu, Y.; Shi, Y.; Piper, J.; Paulsen, I.; Jin, D. One-step protein conjugation to upconversion nanoparticles. Anal. Chem., 2015, 87(20), 10406-10413.
[http://dx.doi.org/10.1021/acs.analchem.5b02523] [PMID: 26429146]
[46]
Meirinho, S.G.; Dias, L.G.; Peres, A.M.; Rodrigues, L.R. Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal. Chim. Acta, 2017, 987(22), 25-37.
[http://dx.doi.org/10.1016/j.aca.2017.07.071] [PMID: 28916037]
[47]
Zhou, W.; Zhou, Y.; Wu, J.; Liu, Z.; Zhao, H.; Liu, J.; Ding, J. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J. Drug Target., 2014, 22(1), 57-66.
[http://dx.doi.org/10.3109/1061186X.2013.839683] [PMID: 24156476]
[48]
Ding, F.; Gao, Y.; He, X. Recent progresses in biomedical applications of aptamer-functionalized systems. Bioorg. Med. Chem. Lett., 2017, 27(18), 4256-4269.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.032] [PMID: 28803753]
[49]
Luzzati, V.; Masson, F.; Lerman, L.S. Interaction of DNA and proflavine: a small-angle x-ray scattering study. J. Mol. Biol., 1961, 3(5), 634-639.
[http://dx.doi.org/10.1016/S0022-2836(61)80026-0] [PMID: 14467543]
[50]
Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA, 2013, 110(20), 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110] [PMID: 23630258]
[51]
Zhang, Y.; Hong, H.; Cai, W. Tumor-targeted drug delivery with aptamers. Curr. Med. Chem., 2011, 18(27), 4185-4194.
[http://dx.doi.org/10.2174/092986711797189547] [PMID: 21838687]
[52]
Wang, Z.; Lu, Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem., 2009, 19(13), 1788-1798.
[http://dx.doi.org/10.1039/b813939c] [PMID: 24307758]
[53]
Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P.W.; Langer, R.; Farokhzad, O.C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett., 2007, 7(10), 3065-3070.
[http://dx.doi.org/10.1021/nl071546n] [PMID: 17854227]
[54]
Wang, G.; Wang, Y.; Chen, L.; Choo, J. Nanomaterial-assisted aptamers for optical sensing. Biosens. Bioelectron., 2010, 25(8), 1859-1868.
[http://dx.doi.org/10.1016/j.bios.2009.11.012] [PMID: 20129770]
[55]
Natfji, A.A.; Ravishankar, D.; Osborn, H.M.I.; Greco, F. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci., 2017, 106(11), 3179-3187.
[http://dx.doi.org/10.1016/j.xphs.2017.06.019] [PMID: 28669714]
[56]
Fortin, D. The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr. Cancer Drug Targets, 2012, 12(3), 247-259.
[http://dx.doi.org/10.2174/156800912799277511] [PMID: 22229251]
[57]
Monaco, I.; Camorani, S.; Colecchia, D.; Locatelli, E.; Calandro, P.; Oudin, A.; Niclou, S.; Arra, C.; Chiariello, M.; Cerchia, L.; Comes Franchini, M. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood-brain barrier. J. Med. Chem., 2017, 60(10), 4510-4516.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00527] [PMID: 28471660]
[58]
Hu, X.; Wang, Y.; Tan, Y.; Wang, J.; Liu, H.; Wang, Y.; Yang, S.; Shi, M.; Zhao, S.; Zhang, Y.; Yuan, Q. A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv. Mater., 2017, 29(15)1605235
[http://dx.doi.org/10.1002/adma.201605235] [PMID: 28185322]
[59]
Huang, J.; Yang, X.; He, X.; Wang, K.; Liu, J.; Shi, H.; Wang, Q.; Guo, Q.P.; He, D.G. Design and bioanalytical applications of DNA hairpin-based fluorescent probes. Trends Analyt. Chem., 2014, 53, 11-20.
[http://dx.doi.org/10.1016/j.trac.2013.08.007]
[60]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 113(4), 2842-2862.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[61]
von Roemeling, C.; Jiang, W.; Chan, C.K.; Weissman, I.L.; Kim, B.Y.S. Breaking down the darriers to precision cancer nanomedicine. Trends Biotechnol., 2017, 35(2), 159-171.
[http://dx.doi.org/10.1016/j.tibtech.2016.07.006] [PMID: 27492049]
[62]
Han, L.; Zhang, Y.; Zhang, Y.; Shu, Y.; Chen, X.W.; Wang, J.H. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017, 171(171), 32-38.
[http://dx.doi.org/10.1016/j.talanta.2017.04.056] [PMID: 28551145]
[63]
Sanna Angotzi, M.; Musinu, A.; Mameli, V.; Ardu, A.; Cara, C.; Niznansky, D.; Xin, H.L.; Cannas, C. Spinel ferrite core-shell nanostructures by a versatile solvothermal seed-mediated growth approach and study of their nanointerfaces. ACS Nano, 2017, 11(8), 7889-7900.
[http://dx.doi.org/10.1021/acsnano.7b02349] [PMID: 28735529]
[64]
Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu(2-x) S core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc., 2013, 135(23), 8571-8577.
[http://dx.doi.org/10.1021/ja4013497] [PMID: 23687972]
[65]
Li, F.; Lu, J.; Kong, X.; Hyeon, T.; Ling, D. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater., 2017, 29(14)1605897
[http://dx.doi.org/10.1002/adma.201605897] [PMID: 28224677]
[66]
Chauhan, V.P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M.G.; Jain, R.K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl., 2011, 50(48), 11417-11420.
[http://dx.doi.org/10.1002/anie.201104449] [PMID: 22113800]
[67]
Dai, Q.; Walkey, C.; Chan, W.C. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. Engl., 2014, 53(20), 5093-5096.
[http://dx.doi.org/10.1002/anie.201309464] [PMID: 24700480]
[68]
Ohta, S.; Glancy, D.; Chan, W.C. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351(6275), 841-845.
[http://dx.doi.org/10.1126/science.aad4925] [PMID: 26912892]
[69]
Raeesi, V.; Chou, L.Y.; Chan, W.C. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures. Adv. Mater., 2016, 28(38), 8511-8518.
[http://dx.doi.org/10.1002/adma.201600773] [PMID: 27501857]
[70]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[71]
Uprety, B.; Jensen, J.; Aryal, B.R.; Davis, R.C.; Woolley, A.T.; Harb, J.N. Directional growth of DNA-functionalized nanorods to enable continuous, site-specific metallization of DNA origami templates. Langmuir, 2017, 33(39), 10143-10152.
[http://dx.doi.org/10.1021/acs.langmuir.7b01659] [PMID: 28876958]
[72]
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev., 2017, 117(20), 12584-12640.
[http://dx.doi.org/10.1021/acs.chemrev.6b00825] [PMID: 28605177]
[73]
Numajiri, K.; Yamazaki, T.; Kimura, M.; Kuzuya, A.; Komiyama, M. Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. J. Am. Chem. Soc., 2010, 132(29), 9937-9939.
[http://dx.doi.org/10.1021/ja104702q] [PMID: 20590144]
[74]
Pal, S.; Deng, Z.; Ding, B.; Yan, H.; Liu, Y. DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2700-2704.
[http://dx.doi.org/10.1002/anie.201000330] [PMID: 20235262]
[75]
Stephanopoulos, N.; Liu, M.; Tong, G.J.; Li, Z.; Liu, Y.; Yan, H.; Francis, M.B. Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. Nano Lett., 2010, 10(7), 2714-2720.
[http://dx.doi.org/10.1021/nl1018468] [PMID: 20575574]
[76]
Maune, H.T.; Han, S.P.; Barish, R.D.; Bockrath, M.; Goddard, W.A., III; Rothemund, P.W.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol., 2010, 5(1), 61-66.
[http://dx.doi.org/10.1038/nnano.2009.311] [PMID: 19898497]
[77]
Castro, C.E.; Dietz, H.; Högberg, B. DNA origami devices for molecular-scale precision measurements. MRS Bull., 2017, 42(12), 925-929.
[http://dx.doi.org/10.1557/mrs.2017.273]
[78]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[79]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[80]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[81]
Yun, S.H.; Sjj, K. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 2017, 1, pii: 0008.
[http://dx.doi.org/10.1038/s41551-016-0008] [PMID: 28649464]
[82]
Alvarado, A.G.; Ortega, A.; Ceja, I.; Arellano, M.; Puig, J.E. Synthesis, characterization, and drug delivery from pH- and thermoresponsive Poly(N-Isopropylacrylamide)/chito-san core/shell nanocomposites made by semicontinuous heterophase polymerization. J. Nanomater., 2017, 2017(6796412), 1-7.
[http://dx.doi.org/10.1155/2017/6796412]
[83]
Wang, H.; Yi, J.; Mukherjee, S.; Banerjee, P.; Zhou, S. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale, 2014, 6(21), 13001-13011.
[http://dx.doi.org/10.1039/C4NR03748K] [PMID: 25243783]
[84]
De Geest, B.G.; Skirtach, A.G.; Mamedov, A.A.; Antipov, A.A.; Kotov, N.A.; De Smedt, S.C.; Sukhorukov, G.B. Ultrasound-triggered release from multilayered capsules. Small, 2007, 3(5), 804-808.
[http://dx.doi.org/10.1002/smll.200600441] [PMID: 17385759]
[85]
Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E.M.; Frieder, J.; Wu, J.; Farokhzad, O.C. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11853-11857.
[http://dx.doi.org/10.1002/anie.201204018] [PMID: 23081716]
[86]
Kuo, T.R.; Hovhannisyan, V.A.; Chao, Y.C.; Chao, S.L.; Chiang, S.J.; Lin, S.J.; Dong, C.Y.; Chen, C.C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation. J. Am. Chem. Soc., 2010, 132(40), 14163-14171.
[http://dx.doi.org/10.1021/ja105360z] [PMID: 20857981]
[87]
Lee, J.H.; Jeong, H.S.; Dong, H.L.; Beack, S.; Kim, T.; Lee, G.H. Targeted hyaluronate-hollow gold nanosphere conjugate for anti-obesity photothermal lipolysis. ACS Biomater. Sci. Eng., 2017, 3(12), 3646-3653.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00549]
[88]
Poudel, B.K.; Gupta, B.; Ramasamy, T.; Thapa, R.K.; Pathak, S.; Oh, K.T.; Jeong, J.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf. B Biointerfaces, 2017, 160, 73-83.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.010] [PMID: 28917152]
[89]
Chen, Y.J.; Huang, X. DNA sequencing by denaturation: principle and thermodynamic simulations. Anal. Biochem., 2009, 384(1), 170-179.
[http://dx.doi.org/10.1016/j.ab.2008.09.048] [PMID: 18930015]
[90]
Chaires, J.B.; Herrera, J.E.; Waring, M.J. Preferential binding of daunomycin to 5‘ATCG and 5’ATGC sequences revealed by footprinting titration experiments. Biochemistry, 1990, 29(26), 6145-6153.
[http://dx.doi.org/10.1021/bi00478a006] [PMID: 2207063]
[91]
Zhang, D.; Zheng, A.; Li, J.; Wu, M.; Cai, Z.; Wu, L.; Wei, Z.; Yang, H.; Liu, X.; Liu, J. Tumor microenvironment activable self-assembled DNA hybrids for pH and redox dual-responsive chemotherapy/PDT treatment of hepatocellular carcinoma. Adv. Sci. (Weinh.), 2017, 4(4)1600460
[http://dx.doi.org/10.1002/advs.201600460] [PMID: 28435778]
[92]
Huang, Y.F.; Sefah, K.; Bamrungsap, S.; Chang, H.T.; Tan, W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008, 24(20), 11860-11865.
[http://dx.doi.org/10.1021/la801969c] [PMID: 18817428]
[93]
Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M.I.; Zhang, K.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; Tan, W. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 2012, 6(6), 5070-5077.
[http://dx.doi.org/10.1021/nn300694v] [PMID: 22631052]
[94]
Sun, Q.; You, Q.; Pang, X.; Tan, X.; Wang, J.; Liu, L.; Guo, F.; Tan, F.; Li, N. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials, 2017, 122, 188-200.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.021] [PMID: 28131043]
[95]
Qiu, W.X.; Liu, L.H.; Li, S.Y.; Lei, Q.; Luo, G.F.; Zhang, X.Z. ACPI conjugated gold nanorods as nanoplatform for dual image guided activatable photodynamic and photothermal combined therapy in vivo. Small, 2017, 13(18)1603956
[http://dx.doi.org/10.1002/smll.201603956] [PMID: 28266809]
[96]
Zhu, X.; Huang, H.; Zhang, Y.; Zhang, H.; Hou, L.; Zhang, Z. Cit/CuS@Fe3O4-based and enzyme-responsive magnetic nanoparticles for tumor chemotherapy, photothermal, and photodynamic therapy. J. Biomater. Appl., 2017, 31(7), 1010-1025.
[http://dx.doi.org/10.1177/0885328216676159] [PMID: 28178904]
[97]
Wegner, K.D.; Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev., 2015, 44(14), 4792-4834.
[http://dx.doi.org/10.1039/C4CS00532E] [PMID: 25777768]
[98]
Liu, J.N.; Bu, W.; Shi, J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev., 2017, 117(9), 6160-6224.
[http://dx.doi.org/10.1021/acs.chemrev.6b00525] [PMID: 28426202]
[99]
Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods, 2010, 7(8), 603-614.
[http://dx.doi.org/10.1038/nmeth.1483] [PMID: 20676081]
[100]
Li, L.; Hao, P.; Wei, P.; Fu, L.; Ai, X.; Zhang, J.; Zhou, J. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification. Biomaterials, 2017, 136, 43-55.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.006] [PMID: 28511143]
[101]
Zhang, C.; Macfarlane, R.J.; Young, K.L.; Choi, C.H.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C.A. A general approach to DNA-programmable atom equivalents. Nat. Mater., 2013, 12(8), 741-746.
[http://dx.doi.org/10.1038/nmat3647] [PMID: 23685863]
[102]
Han, S.; Samanta, A.; Xie, X.; Huang, L.; Peng, J.; Park, S.J.; Teh, D.B.L.; Choi, Y.; Chang, Y.T.; All, A.H.; Yang, Y.; Xing, B.; Liu, X. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv. Mater., 2017, 29(18)1700244
[http://dx.doi.org/10.1002/adma.201700244] [PMID: 28295739]
[103]
Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-Gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007.
[http://dx.doi.org/10.1002/adma.201601710] [PMID: 27679425]
[104]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V.; Govindhan, M.; Manickam, S.; Vellaichamy, G. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103(30), 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[105]
Xu, W.; Xie, X.; Li, D.; Yang, Z.; Li, T.; Liu, X. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Small, 2012, 8(12), 1846-1850.
[http://dx.doi.org/10.1002/smll.201200263] [PMID: 22461378]
[106]
Zhang, J.Z. Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett., 2010, 1(4), 191-230.
[http://dx.doi.org/10.1021/jz900366c]
[107]
Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329), 1078-1081.
[http://dx.doi.org/10.1126/science.277.5329.1078] [PMID: 9262471]
[108]
Xu, W.; Xue, X.; Li, T.; Zeng, H.; Liu, X. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew. Chem. Int. Ed. Engl., 2009, 48(37), 6849-6852.
[http://dx.doi.org/10.1002/anie.200901772] [PMID: 19479915]
[109]
Rasheed, P.A.; Sandhyarani, N. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Mikrochim. Acta, 2017, 184(15), 1-20.
[http://dx.doi.org/10.1007/s00604-017-2143-1]
[110]
Zhang, J.; Song, S.; Wang, L.; Pan, D.; Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat. Protoc., 2007, 2(11), 2888-2895.
[http://dx.doi.org/10.1038/nprot.2007.419] [PMID: 18007624]
[111]
Zhao, W.W.; Wang, J.; Xu, J.J.; Chen, H.Y. Energy transfer between CdS quantum dots and Au nanoparticles in photoelectrochemical detection. Chem. Commun. (Camb.), 2011, 47(39), 10990-10992.
[http://dx.doi.org/10.1039/c1cc13952e] [PMID: 21909528]
[112]
Zhao, W.W.; Yu, P.P.; Shan, Y.; Wang, J.; Xu, J.J.; Chen, H.Y. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal. Chem., 2012, 84(14), 5892-5897.
[http://dx.doi.org/10.1021/ac300127s] [PMID: 22765356]
[113]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical DNA biosensors. Chem. Rev., 2014, 114(15), 7421-7441.
[http://dx.doi.org/10.1021/cr500100j] [PMID: 24932760]
[114]
Yang, D.; Tang, Y.; Guo, Z.; Chen, X.; Miao, P. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy. Mol. Biosyst., 2017, 13(10), 1936-1939.
[http://dx.doi.org/10.1039/C7MB00458C] [PMID: 28796267]
[115]
Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 2015, 15(5), 10481-10510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[116]
Sun, F.; Ella-Menye, J.R.; Galvan, D.D.; Bai, T.; Hung, H.C.; Chou, Y.N.; Zhang, P.; Jiang, S.; Yu, Q. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano, 2015, 9(3), 2668-2676.
[http://dx.doi.org/10.1021/nn506447k] [PMID: 25738888]
[117]
Zhang, D.; Lu, Y.; Zhang, Q.; Liu, L.; Li, S.; Yao, Y. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sens. Actuators B Chem., 2016, 222, 994-1002.
[http://dx.doi.org/10.1016/j.snb.2015.09.041]
[118]
Ma, Z.Y.; Ruan, Y.F.; Xu, F.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Protein binding bends the gold nanoparticle capped DNA sequence: toward novel energy-transfer-based photoelectrochemical protein detection. Anal. Chem., 2016, 88(7), 3864-3871.
[http://dx.doi.org/10.1021/acs.analchem.6b00012] [PMID: 26967949]
[119]
Xu, F.; Zhu, Y.C.; Ma, Z.Y.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chem. Commun. (Camb.), 2016, 52(14), 3034-3037.
[http://dx.doi.org/10.1039/C5CC09963C] [PMID: 26790604]
[120]
Song, S.; Lu, Y.; Li, X.; Cao, S.; Pei, Y.; Aastrup, T.; Pei, Z. Optimization of 3D surfaces of dextran with different molecule weights for real-time detection of biomolecular interactions by a QCM biosensor. Polymers (Basel), 2017, 9(9), 409-422.
[http://dx.doi.org/10.3390/polym9090409] [PMID: 30965713]
[121]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[122]
Hu, L.; Hu, S.; Guo, L.; Shen, C.; Yang, M.; Rasooly, A. DNA generated electric current biosensor. Anal. Chem., 2017, 89(4), 2547-2552.
[http://dx.doi.org/10.1021/acs.analchem.6b04756] [PMID: 28219246]
[123]
Jepsen, M.L.; Harmsen, C.; Godbole, A.A.; Nagaraja, V.; Knudsen, B.R.; Ho, Y.P. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor. Nanoscale, 2016, 8(1), 358-364.
[http://dx.doi.org/10.1039/C5NR06326D] [PMID: 26616006]
[124]
Ma, Z.Y.; Xu, F.; Qin, Y.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Invoking direct exciton-plasmon interactions by catalytic ag deposition on au nanoparticles: novel photoelectrochemical bioanalysis with high efficiency. Anal. Chem., 2016, 88(8), 4183-4187.
[http://dx.doi.org/10.1021/acs.analchem.6b00503] [PMID: 27023112]
[125]
Zhou, L.; Shen, Q.; Zhao, P.; Xiang, B.; Nie, Z.; Huang, Y.; Yao, S. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide. Methods, 2013, 64(3), 299-304.
[http://dx.doi.org/10.1016/j.ymeth.2013.09.001] [PMID: 24051334]
[126]
Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev., 2008, 108(5), 1517-1549.
[http://dx.doi.org/10.1021/cr078203u] [PMID: 18426241]
[127]
Wang, H.; Xu, W.; Zhang, H.; Li, D.; Yang, Z.; Xie, X.; Li, T.; Liu, X. EcoRI-modified gold nanoparticles for dual-mode colorimetric detection of magnesium and pyrophosphate ions. Small, 2011, 7(14), 1987-1992.
[http://dx.doi.org/10.1002/smll.201100470] [PMID: 21671433]
[128]
Miao, P.; Tang, Y.; Wang, L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces, 2017, 9(4), 3940-3947.
[http://dx.doi.org/10.1021/acsami.6b14247] [PMID: 28079364]
[129]
Zeng, L.; Miller, E.W.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc., 2006, 128(1), 10-11.
[http://dx.doi.org/10.1021/ja055064u] [PMID: 16390096]
[130]
Yao, J.; Zhang, K.; Zhu, H.; Ma, F.; Sun, M.; Yu, H.; Sun, J.; Wang, S. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal. Chem., 2013, 85(13), 6461-6468.
[http://dx.doi.org/10.1021/ac401011r] [PMID: 23745782]
[131]
Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta, 2012, 84(12), 49-61.
[http://dx.doi.org/10.1016/j.electacta.2012.04.044]
[132]
Mirzaei, M.; Behzadi, M.; Abadi, N.M.; Beizaei, A. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater., 2011, 186(2-3), 1739-1743.
[http://dx.doi.org/10.1016/j.jhazmat.2010.12.080] [PMID: 21232852]
[133]
Soto-Alvaredo, J.; Montes-Bayón, M.; Bettmer, J. Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Anal. Chem., 2013, 85(3), 1316-1321.
[http://dx.doi.org/10.1021/ac302851d] [PMID: 23305255]
[134]
Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc., 2007, 129(2), 244-245.
[http://dx.doi.org/10.1021/ja065552h] [PMID: 17212382]
[135]
Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. (Camb.), 2008, 39(39), 4825-4827.
[http://dx.doi.org/10.1039/b808686a] [PMID: 18830506]
[136]
Lin, M.; Song, P.; Zhou, G.; Zuo, X.; Aldalbahi, A.; Lou, X.; Shi, J.; Fan, C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc., 2016, 11(7), 1244-1263.
[http://dx.doi.org/10.1038/nprot.2016.071] [PMID: 27310264]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy