General Review Article

天然产物:抗锥虫病引起的被忽视疾病的药物发现的关键原型

卷 27, 期 13, 2020

页: [2133 - 2146] 页: 14

弟呕挨: 10.2174/0929867325666180501102450

价格: $65

摘要

背景:被忽视的热带病是由微生物和病毒引起的一组感染,主要影响世界贫困地区。另外,大多数可用药物与长期治疗和高毒性有关,这限制了应用和患者依从性。制药行业不认为对研发的投资具有吸引力,因为理想情况下最终产品必须便宜,并且不能返还所投资的金额。天然产物一直是生物活性化合物的重要来源,考虑到独特的结构多样性和生物活性,天然产物优于合成化合物。另一方面,隔离困难和低产率,对环境的影响和高成本通常限制了它们本身作为药物的应用。 目的:在这篇综述中,涵盖了使用天然产物作为半合成或全合成的原型,以及使用天然产物作为有希望的命中品,特别是针对具有抗锥虫病活性的化合物(如锥虫)的化合物。和利什曼原虫属。 方法:采用这种方法从文献中检索选定的报告。 结论:综上所述,可以得出结论,天然产品是设计针对这些寄生虫的新型药物的低估来源。

关键词: 天然产物,被忽视的疾病,原型,半合成衍生物,合成衍生物,锥虫病。

[1]
Neglected tropical diseases. World Health Organization. Available at: http://www.who.int/neglected_diseases/ diseases/en/ (Accessed Date: November 26, 2017).
[2]
Aagaard-Hansen, J.; Chaignat, C.L. Neglected tropical diseases: equity and social determinants in: Equity, social determinants and public health programmes; Blas, E.; Kurup, A. S. K., Eds.; World Health Organization: Geneva, SWI, 2010, pp. 135-157.
[3]
Moran, M. Global funding of new products for neglected tropical diseases in: Institute of Medicine (US) Forum on Microbial Threats. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies; National Academies Press: Washington (DC), US, 2011, A16.
[4]
Chapman, N.; Abela-Oversteegen, L.; Doubell, A.; Chowdhary, V.; Gurjav, U.; Ong, M. Neglected disease research and development: a pivotal moment for global health. Policy Cures; G-FINDER, 2016, p. 115.
[5]
Patwardhan, B. Ethnopharmacology and drug discovery. J. Ethnopharmacol., 2005, 100(1-2), 50-52.
[http://dx.doi.org/10.1016/j.jep.2005.06.006] [PMID: 16023811]
[6]
Raza, M. A role for physicians in ethnopharmacology and drug discovery. J. Ethnopharmacol., 2006, 104(3), 297-301.
[http://dx.doi.org/10.1016/j.jep.2006.01.007] [PMID: 16459039]
[7]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[8]
Lemke, T.L.; Williams, D.A., Eds.; Foye’s Principles of Medicinal Chemistry, 7th ed; LWW: Philadephia, 2012.
[9]
The Nobel Prize in physiology or medicine. Available at: https://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/ (Accessed Date: November 26, 2017)
[10]
Strong case for weekly paclitaxel in breast cancer. Available at: http://www.medscape.com/viewarticle/805220 ( Accessed Date: November 26, 2017)
[11]
Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem., 2011, 46(1), 23-34.
[http://dx.doi.org/10.1016/j.procbio.2010.09.004]
[12]
Naill, M.C.; Kolewe, M.E.; Roberts, S.C. Paclitaxel uptake and transport in Taxus cell suspension cultures. Biochem. Eng. J., 2012, 63, 50-56.
[http://dx.doi.org/10.1016/j.bej.2012.01.006] [PMID: 23180977]
[13]
Nyongbela, K.D.; Ntie-Kang, F.; Hoye, T.R.; Efange, S.M.N. Antiparasitic sesquiterpenes from the cameroonian spice scleria striatinux and preliminary in vitro and in silico DMPK assessment. Nat. Prod. Bioprospect., 2017, 7(3), 235-247.
[http://dx.doi.org/10.1007/s13659-017-0125-y] [PMID: 28421410]
[14]
Rodrigues, D.F.; Maniscalco, D.A.; Silva, F.A.J.; Chiari, B.G.; Castelli, M.V.; Isaac, V.L.B.; Cicarelli, R.M.B.; López, S.N. Trypanocidal activity of Flavokawin B, a component of polygonum ferrugineum wedd. Planta Med., 2017, 83(3-04), 239-244.
[http://dx.doi.org/10.1055/s-0042-112031] [PMID: 27442262]
[15]
Ezzat, S.M.; Salama, M.M.; Mahrous, E.A.; Maes, L.; Pan, C.H.; Abdel-Sattar, E. Antiprotozoal activity of major constituents from the bioactive fraction of Verbesina encelioides. Nat. Prod. Res., 2017, 31(6), 676-680.
[http://dx.doi.org/10.1080/14786419.2016.1180604] [PMID: 27154232]
[16]
Beer, M.F.; Frank, F.M.; Germán Elso, O.; Ernesto Bivona, A.; Cerny, N.; Giberti, G.; Luis Malchiodi, E.; Susana Martino, V.; Alonso, M.R.; Patricia Sülsen, V.; Cazorla, S.I. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharm. Biol., 2016, 54(10), 2188-2195.
[http://dx.doi.org/10.3109/13880209.2016.1150304] [PMID: 26983579]
[17]
Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33(1), 10-19.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[18]
Coura, J.R. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions--a comprehensive review. Mem. Inst. Oswaldo Cruz, 2015, 110(3), 277-282.
[http://dx.doi.org/10.1590/0074-0276140362] [PMID: 25466622]
[19]
Chagas disease (American trypanosomiasis) – Epidemiology. Available at: http://www.who.int/chagas/ epidemiology/en/ (Accessed Date: November 26, 2017)
[20]
Tempone, A.G.; Sartorelli, P.; Mady, C.; Fernandes, F. Natural products to anti-trypanosomal drugs: an overview of new drug prototypes for American Trypanosomiasis. Cardiovasc. Hematol. Agents Med. Chem., 2007, 5(3), 222-235.
[http://dx.doi.org/10.2174/187152507781058726] [PMID: 17630949]
[21]
Alviano, D.S.; Barreto, A.L.S. Dias, Fde.A.; Rodrigues, Ide.A.; Rosa, Mdo.S.; Alviano, C.S.; Soares, R.M.A. Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Front. Microbiol., 2012, 3, 283.
[http://dx.doi.org/10.3389/fmicb.2012.00283] [PMID: 22888328]
[22]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: a review. F1000 Res., 2017, 6, 750-764.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[23]
Handler, M.Z.; Patel, P.A.; Kapila, R.; Al-Qubati, Y.; Schwartz, R.A. Cutaneous and mucocutaneous leishmaniasis: Clinical perspectives. J. Am. Acad. Dermatol., 2015, 73(6), 897-908.
[http://dx.doi.org/10.1016/j.jaad.2014.08.051] [PMID: 26568335]
[24]
Bern, C.; Maguire, J.H.; Alvar, J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl. Trop. Dis., 2008, 2(10)e313
[http://dx.doi.org/10.1371/journal.pntd.0000313] [PMID: 18958165]
[25]
Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases; Geneva, 2010, 22-26.
[26]
Katsuno, K.; Burrows, J.N.; Duncan, K.; Hooft van Huijsduijnen, R.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758.
[http://dx.doi.org/10.1038/nrd4683] [PMID: 26435527]
[27]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[28]
Morais, T.R.; da Costa-Silva, T.A.; Tempone, A.G.; Borborema, S.E.T.; Scotti, M.T.; de Sousa, R.M.F.; Araujo, A.C.C.; de Oliveira, A.; de Morais, S.A.L.; Sartorelli, P.; Lago, J.H.G. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships. Molecules, 2014, 19(5), 5761-5776.
[http://dx.doi.org/10.3390/molecules19055761] [PMID: 24802987]
[29]
Leite, J.P.V.; Oliveira, A.B.; Lombardi, J.A.; Filho, J.D.S.; Chiari, E. Trypanocidal activity of triterpenes from Arrabidaea triplinervia and derivatives. Biol. Pharm. Bull., 2006, 29(11), 2307-2309.
[http://dx.doi.org/10.1248/bpb.29.2307] [PMID: 17077535]
[30]
Mazoir, N.; Benharref, A.; Bailén, M.; Reina, M.; González-Coloma, A.; Martínez-Díaz, R.A. Antileishmanial and antitrypanosomal activity of triterpene derivatives from latex of two Euphorbia species. Z. Natforsch. C J. Biosci., 2011, 66(7-8), 360-366.
[http://dx.doi.org/10.1515/znc-2011-7-807] [PMID: 21950160]
[31]
Aniszewski, T. Alkaloids - Secrets of life; Elsevier: Amsterdam, 2007.
[32]
Endeshaw, M.; Zhu, X.; He, S.; Pandharkar, T.; Cason, E.; Mahasenan, K.V.; Agarwal, H.; Li, C.; Munde, M.; Wilson, W.D.; Bahar, M.; Doskotch, R.W.; Kinghorn, A.D.; Kaiser, M.; Brun, R.; Drew, M.E.; Werbovetz, K.A. 8,8-dialkyldihydroberberines with potent antiprotozoal activity. J. Nat. Prod., 2013, 76(3), 311-315.
[http://dx.doi.org/10.1021/np300638f] [PMID: 23167812]
[33]
Bahar, M.; Deng, Y.; Zhu, X.; He, S.; Pandharkar, T.; Drew, M.E.; Navarro-Vázquez, A.; Anklin, C.; Gil, R.R.; Doskotch, R.W.; Werbovetz, K.A.; Kinghorn, A.D. Potent antiprotozoal activity of a novel semi-synthetic berberine derivative. Bioorg. Med. Chem. Lett., 2011, 21(9), 2606-2610.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.101] [PMID: 21474310]
[34]
Borges-Argáez, R.; Vela-Catzín, T.; Yam-Puc, A.; Chan-Bacab, M.J.; Moo-Puc, R.E.; Cáceres-Farfán, M. Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Med., 2009, 75(12), 1336-1338.
[http://dx.doi.org/10.1055/s-0029-1185670] [PMID: 19431103]
[35]
Borges-Argáez, R.; Balnbury, L.; Flowers, A.; Giménez-Turba, A.; Ruiz, G.; Waterman, P.G.; Peña-Rodríguez, L.M. Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine, 2007, 14(7-8), 530-533.
[http://dx.doi.org/10.1016/j.phymed.2006.11.027] [PMID: 17291734]
[36]
Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Alves Conserva, G.A.; Mesquita, J.T.; Galuppo, M.K.; Tempone, A.G.; Neves, B.J.; Andrade, C.H.; Cunha, R.L.O.R.; Uemi, M.; Sartorelli, P.; Lago, J.H.G. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. Phytomedicine, 2017, 24, 62-67.
[http://dx.doi.org/10.1016/j.phymed.2016.11.015] [PMID: 28160863]
[37]
Rodrigues, L.C.; Barbosa-Filho, J.M.; de Oliveira, M.R.; do Nascimento Néris, P.L.; Borges, F.V.P.; Mioso, R. Synthesis and antileishmanial activity of natural dehydrodieugenol and its mono- and dimethyl ethers. Chem. Biodivers., 2016, 13(7), 870-874.
[http://dx.doi.org/10.1002/cbdv.201500280] [PMID: 27251851]
[38]
de Oliveira, A.; Mesquita, J.T.; Tempone, A.G.; Lago, J.H.G.; Guimarães, E.F.; Kato, M.J. Leishmanicidal activity of an alkenylphenol from Piper malacophyllum is related to plasma membrane disruption. Exp. Parasitol., 2012, 132(3), 383-387.
[http://dx.doi.org/10.1016/j.exppara.2012.08.019] [PMID: 22981719]
[39]
Varela, M.T.; Dias, R.Z.; Martins, L.F.; Ferreira, D.D.; Tempone, A.G.; Ueno, A.K.; Lago, J.H.G.; Fernandes, J.P.S. Gibbilimbol analogues as antiparasitic agents--Synthesis and biological activity against Trypanosoma cruzi and Leishmania (L.) infantum. Bioorg. Med. Chem. Lett., 2016, 26(4), 1180-1183.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.040] [PMID: 26821820]
[40]
Varela, M.T.; Lima, M.L.; Galuppo, M.K.; Tempone, A.G.; de Oliveira, A.; Lago, J.H.G.; Fernandes, J.P.S. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum. Chem. Biol. Drug Des., 2017, 90(5), 1007-1011.
[http://dx.doi.org/10.1111/cbdd.12986] [PMID: 28371557]
[41]
Lopes, N.P.; Chicaro, P.; Kato, M.J.; Albuquerque, S.; Yoshida, M. Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi. Planta Med., 1998, 64(7), 667-668.
[http://dx.doi.org/10.1055/s-2006-957548] [PMID: 9810278]
[42]
Martins, R.C.C.; Lago, J.H.G.; Albuquerque, S.; Kato, M.J. Trypanocidal tetrahydrofuran lignans from inflorescences of Piper solmsianum. Phytochemistry, 2003, 64(2), 667-670.
[http://dx.doi.org/10.1016/S0031-9422(03)00356-X] [PMID: 12943793]
[43]
da Rosa, R.; de Moraes, M.H.; Zimmermann, L.A.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur. J. Med. Chem., 2017, 128, 25-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.029] [PMID: 28152426]
[44]
Itoh, A.; Ikuta, Y.; Baba, Y.; Tanahashi, T.; Nagakura, N. Ipecac alkaloids from Cephaelis acuminata. Phytochemistry, 1999, 52(6), 1169-1176.
[http://dx.doi.org/10.1016/S0031-9422(99)00361-1] [PMID: 10643674]
[45]
Ito, A.; Lee, Y.H.; Chai, H.B.; Gupta, M.P.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. 1′,2′,3′,4′-tetradehydrotubulosine, a cytotoxic alkaloid from Pogonopus speciosus. J. Nat. Prod., 1999, 62(9), 1346-1348.
[http://dx.doi.org/10.1021/np990255u] [PMID: 10514334]
[46]
Kölzer, M.; Weitzel, K.; Göringer, H.U.; Thines, E.; Opatz, T. Synthesis of bioactive 2-aza-analogues of ipecac and alangium alkaloids. ChemMedChem, 2010, 5(9), 1456-1464.
[http://dx.doi.org/10.1002/cmdc.201000230] [PMID: 20575140]
[47]
Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O.K.; Ashurmetov, O.A. New icetexane and 20 norabietane diterpenes with trypanocidal activity from Dracocephalum komarovi. J. Nat. Prod., 2003, 66(1), 128-131.
[http://dx.doi.org/10.1021/np020308z] [PMID: 12542361]
[48]
Suto, Y.; Nakajima-Shimada, J.; Yamagiwa, N.; Onizuka, Y.; Iwasaki, G. Synthesis and biological evaluation of quinones derived from natural product komaroviquinone as anti-Trypanosoma cruzi agents. Bioorg. Med. Chem. Lett., 2015, 25(15), 2967-2971.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.022] [PMID: 26037321]
[49]
Aponte, J.C.; Vaisberg, A.J.; Rojas, R.; Caviedes, L.; Lewis, W.H.; Lamas, G.; Sarasara, C.; Gilman, R.H.; Hammond, G.B. Isolation of cytotoxic metabolites from targeted peruvian amazonian medicinal plants. J. Nat. Prod., 2008, 71(1), 102-105.
[http://dx.doi.org/10.1021/np070560c] [PMID: 18163590]
[50]
Aponte, J.C.; Verástegui, M.; Málaga, E.; Zimic, M.; Quiliano, M.; Vaisberg, A.J.; Gilman, R.H.; Hammond, G.B. Synthesis, cytotoxicity, and anti-Trypanosoma cruzi activity of new chalcones. J. Med. Chem., 2008, 51(19), 6230-6234.
[http://dx.doi.org/10.1021/jm800812k] [PMID: 18798609]
[51]
Lima, T.C.; Souza, R.J.; Santos, A.D.; Moraes, M.H.; Biondo, N.E.; Barison, A.; Steindel, M.; Biavatti, M.W. Evaluation of leishmanicidal and trypanocidal activities of phenolic compounds from Calea uniflora Less. Nat. Prod. Res., 2016, 30(5), 551-557.
[http://dx.doi.org/10.1080/14786419.2015.1030740] [PMID: 25880257]
[52]
da Silva Mota, J.; Leite, A.C.; Batista, Junior J.M.; Noelí López, S.; Luz Ambrósio, D.; Duó Passerini, G.; Kato, M.J.; da Silva Bolzani, V.; Barretto Cicarelli, R.M.; Furlan, M. In vitro trypanocidal activity of phenolic derivatives from Peperomia obtusifolia. Planta Med., 2009, 75(6), 620-623.
[http://dx.doi.org/10.1055/s-0029-1185364] [PMID: 19241331]
[53]
Mothana, R.A.; Al-Said, M.S.; Al-Musayeib, N.M.; El Gamal, A.A.; Al-Massarani, S.M.; Al-Rehaily, A.J.; Abdulkader, M.; Maes, L. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. Int. J. Mol. Sci., 2014, 15(5), 8360-8371.
[http://dx.doi.org/10.3390/ijms15058360] [PMID: 24823881]
[54]
Nogueira, M.S.; Da Costa, F.B.; Brun, R.; Kaiser, M.; Schmidt, T.J. ent-Pimarane and ent-kaurane diterpenes from Aldama discolor (Asteraceae) and their antiprotozoal activity. Molecules, 2016, 21(9), 1237-1251.
[http://dx.doi.org/10.3390/molecules21091237] [PMID: 27649126]
[55]
da Silva, A.; Maciel, D.; Freitas, V.P.; Conserva, G.A.A.; Alexandre, T.R.; Purisco, S.U.; Tempone, A.G.; Melhem, M.S.C.; Kato, M.J.; Guimarães, E.F.; Lago, J.H.G. Bioactivity-guided isolation of laevicarpin, an antitrypanosomal and anticryptococcal lactam from Piper laevicarpu (Piperaceae). Fitoterapia, 2016, 111, 24-28.
[http://dx.doi.org/10.1016/j.fitote.2016.04.005] [PMID: 27083380]
[56]
Cretton, S.; Breant, L.; Pourrez, L.; Ambuehl, C.; Marcourt, L.; Ebrahimi, S.N.; Hamburger, M.; Perozzo, R.; Karimou, S.; Kaiser, M.; Cuendet, M.; Christen, P. Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J. Nat. Prod., 2014, 77(10), 2304-2311.
[http://dx.doi.org/10.1021/np5006554] [PMID: 25314007]
[57]
Koolen, H.H.F.; Pral, E.M.F.; Alfieri, S.C.; Marinho, J.V.N.; Serain, A.F.; Hernández-Tasco, A.J.; Andreazza, N.L.; Salvador, M.J. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis. Phytochemistry, 2017, 134, 106-113.
[http://dx.doi.org/10.1016/j.phytochem.2016.11.008] [PMID: 27889243]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy