[1]
Liu, H.; Zhang, Z.; Linhardt, R.J. Lessons learned from the contamination of heparin. Nat. Prod. Rep., 2009, 26, 313-321.
[2]
Shvarev, A.; Bakker, E. Reversible electrochemical detection of nonelectroactive polyions. J. Am. Chem. Soc., 2003, 125, 11192-11193.
[3]
Jena, B.K.; Raj, C.R. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosens. Bioelectron., 2008, 23, 1285-1290.
[4]
Cao, R.; Li, B. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun. , 2011, 47, 2865-2867.
[5]
Wang, Z.X.; Kong, F.Y.; Wang, W.J.; Zhang, R.; Lv, W.X.; Yu, X.H.; Pan, H.C.; Wang, W. “OFF-ON” sensor for detecting heparin based on Hg2+-quenching of photoluminescence nitrogen-rich polymer carbon nanoribbons. Sens. Actuators B ., 2017, 242, 412-417.
[6]
Girolami, B.; Girolami, A. Heparin-induced thrombocytopenia: A review. Semin. Thromb. Hemost., 2006, 32, 803-809.
[7]
Cheng, T.J.; Lin, T.M.; Wu, T.H.; Chang, H.C. Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor. Anal. Chim. Acta, 2001, 432, 101-111.
[8]
Langmaier, J.; Samcova, E.; Samec, Z. Potentiometric sensor for heparin polyion: Transient behavior and response mechanism. Anal. Chem., 2007, 79, 2892-2900.
[9]
Patel, R.P.; Narkowicz, C.; Jacobson, G.A. Effective reversed-phase ion pair high-performance liquid chromatography method for the separation and characterization of intact low-molecular-weight heparins. Anal. Biochem., 2009, 387, 113-121.
[10]
Wen, S.; Zheng, F.; Shen, M.; Shi, X. Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloid Sur. A, 2013, 419, 80-86.
[11]
Fu, X.; Chen, L.; Li, J. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Analyst , 2012, 137, 3653-3658.
[12]
Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosens. Bioelectron., 2012, 34, 227-231.
[13]
Ding, S.N.; Chen, J.F.; Xia, J.; Wang, Y.H.; Cosnier, S. Voltammetric detection of heparin based on anion exchange at electropolymeric film of pyrrole-alkylammonium cationic surfactant and MWCNTs composite. Electrochem. Commun., 2013, 34, 339-343.
[14]
Qi, H.; Zhang, L.; Yang, L.; Yu, P.; Mao, L. Anion-Exchange-based amperometric assay for heparin using polyimidazolium as synthetic receptor. Anal. Chem., 2013, 85, 3439-3445.
[15]
Egawa, Y.; Hayashida, R.; Seki, T.; Anzai, J-I. Fluorometric determination of heparin based on self-quenching of fluorescein-labeled protamine. Talanta, 2008, 76, 736-741.
[16]
Sun, W.; Bandmann, H.; Schrader, T. A fluorescent polymeric heparin sensor. Chemistry Eur. J., 2007, 13, 7701-7707.
[17]
Zheng, C.L.; Ji, Z.X.; Zhang, J.; Ding, S.N. A fluorescent sensor to detect sodium dodecyl sulfate based on the glutathione-stabilized gold nanoclusters/poly diallyldimethylammonium chloride system. Analyst , 2014, 139, 3476-3480.
[18]
Sorgi, F.L.; Bhattacharya, S.; Huang, L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther., 1997, 4, 961-968.
[19]
Reynolds, F.; Weissleder, R.; Josephson, L. Protamine as an efficient membrane-translocating peptide. Bioconjug. Chem., 2005, 16, 1240-1245.
[20]
Nagai, J.; Komeda, T.; Katagiri, Y.; Yumoto, R.; Takano, M. Characterization of Protamine Uptake by Opossum Kidney Epithelial Cells. Biol. Pharm. Bull., 2013, 36, 1942-1949.
[21]
Algar, W.R.; Susumu, K.; Delehanty, J.B.; Medintz, I.L. Semiconductor quantum dots in bioanalysis: Crossing the valley of death. Anal. Chem., 2011, 83, 8826-8837.
[22]
Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev., 2008, 60, 1226-1240.
[23]
Yan, H.; Wang, H.F. Turn-on Room temperature phosphorescence assay of heparin with tunable sensitivity and detection window based on target-induced self-assembly of polyethyleneimine capped mn-doped zns quantum dots. Anal. Chem., 2011, 83, 8589-8595.
[24]
Chen, Z.; Ren, X.; Meng, X.; Tan, L.; Chen, D.; Tang, F. Quantum dots-based fluorescent probes for turn-on and turn-off sensing of butyrylcholinesterase. Biosens. Bioelectron., 2013, 44, 204-209.
[25]
Liu, S.; Hu, J.; Su, X. Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst , 2012, 137, 4598-4604.
[26]
Liu, S.; Hu, J.; Zhang, H.; Su, X. CuInS2 quantum dots-based fluorescence turn off/on probe for detection of melamine. Talanta, 2012, 101, 368-373.
[27]
Gao, X.; Liu, X.; Lin, Z.; Liu, S.; Su, X. CuInS2 quantum dots as a near-infrared fluorescent probe for detecting thrombin in human serum. Analyst , 2012, 137, 5620-5624.
[28]
Gao, X.; Tang, G.; Li, Y.; Su, X. A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Anal. Chim. Acta, 2012, 743, 131-136.
[29]
Cao, Y.; Shi, S.; Wang, L.; Yao, J.; Yao, T. Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex. Biosens. Bioelectron., 2014, 55, 174-179.
[30]
Liu, Z.; Ma, Q.; Wang, X.; Lin, Z.; Zhang, H.; Liu, L.; Su, X. A novel fluorescent nanosensor for detection of heparin and heparinase based on CuInS2 quantum dots. Biosens. Bioelectron., 2014, 54, 617-622.
[31]
Luo, J.D.; Xie, Z.L.; Lam, J.W.Y.; Cheng, L.; Chen, H.Y.; Qiu, C.F.; Kwok, H.S.; Zhan, X.W.; Liu, Y.Q.; Zhu, D.B.; Tang, B.Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. , 2001, 18, 1740-1741.
[32]
Lim, S.J.; An, B.K.; Jung, S.D.; Chung, M.A.; Park, S.Y. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew. Chem. Int. Ed., 2004, 43, 6346-6350.
[33]
Deans, R.; Kim, J.; Machacek, M.R.; Swager, T.M. A poly (p-phenyleneethynylene) with a highly emissive aggregated phase. J. Am. Chem. Soc., 2000, 122, 8565-8566.
[34]
Qian, Y.; Li, S.; Zhang, G.; Wang, Q.; Wang, S.; Xu, H.; Li, C.; Li, Y.; Yang, G. Aggregation-induced emission enhancement of 2-(2 '-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J. Phys. Chem. B, 2007, 111, 5861-5868.
[35]
Shimizu, M.; Takeda, Y.; Higashi, M.; Hiyama, T. 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: Minimal fluorophores exhibiting highly efficient emission in the solid state. Angew. Chem. Int. Ed., 2009, 48, 3653-3656.
[36]
Chen, X.T.; Xiang, Y.; Li, N.; Song, P.S.; Tong, A.J. Fluorescence turn-on detection of protamine based on aggregation-induced emission enhancement characteristics of 4-(6 '-carboxyl)hexyloxysalicylaldehyde azine. Analyst , 2010, 135, 1098-1105.
[37]
Peng, L.; Wang, M.; Zhang, G.; Zhang, D.; Zhu, D. A Fluorescence turn-on detection of cyanide in aqueous solution based on the aggregation-induced emission. Org. Lett., 2009, 11, 1943-1946.
[38]
Wang, M.; Gu, X.; Zhang, G.; Zhang, D.; Zhu, D. Convenient and Continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission. Anal. Chem., 2009, 81, 4444-4449.
[39]
Wang, M.; Zhang, D.; Zhang, G.; Tang, Y.; Wang, S.; Zhu, D. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole. Anal. Chem., 2008, 80, 6443-6448.
[40]
Chen, X.; Hutchison, J.L.; Dobson, P.J.; Wakefield, G. Highly luminescent monodisperse CdSe nanoparticles synthesized in aqueous solution. J. Mater. Sci., 2009, 44, 285-292.