[1]
Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med., 2016, 34, 21-28.
[2]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol., 2016, 7, 2173.
[3]
Fortún, J.; Gioia, F. Invasive candidiasis in the neutropenic patient. Rev. Esp. Quimioter., 2017, 30, 22-25.
[4]
Pfaller, M.; Neofytos, D.; Diekema, D.; Azie, N.; Meier-Kriesche, H.U.; Quan, S.P.; Horn, D. Epidemiology and outcomes of candidemia in 3648 patients: Data from the prospective antifungal therapy (PATH Alliance®) registry, 2004-2008. Diagn. Microbiol. Infect. Dis., 2012, 74, 323-331.
[5]
Pierce, C.G.; Lopez-Ribot, J.L. Candidiasis drug discovery and development: New approaches targeting virulence for discovering and identifying new drugs. Expert Opin. Drug Discov., 2013, 8, 1117-1126.
[6]
Sui, X.; Yan, L.; Jiang, Y.Y. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine, 2017, 35, 5786-5793.
[7]
Anderson, J.B. Evolution of antifungal-drug resistance: Mechanisms and pathogen fitness. Nat. Rev. Microbiol., 2005, 3, 547-556.
[8]
Ai, R.; Wei, J.; Ma, D.; Jiang, L.; Dan, H.; Zhou, Y.; Ji, N.; Zeng, X.; Chen, Q. A meta-analysis of randomized trials assessing the effects of probiotic preparations on oral candidiasis in the elderly. Arch. Oral Biol., 2017, 83, 187-192.
[9]
Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New approaches to antibiotic discovery. Biotechnol. Lett., 2017, 39, 805-817.
[10]
Chen, Z.F.; Ying, G.G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. Environ. Int., 2015, 84, 142-153.
[11]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96.
[12]
Carmona, E.M.; Limper, A.H. Overview of treatment approaches for fungal infections. Clin. Chest Med., 2017, 38, 393-402.
[13]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Alam, M.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. Med. Chem., 2011, 46, 5763-5768.
[14]
Jadhav, S.A.; Kulkarni, K.M.; Patil, P.B.; Dhole, V.R.; Patil, S.S. Design, synthesis and biological evaluation of some novel pyrazoline derivatives. Der Pharma Chem, 2016, 8, 38-45.
[15]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25, 1949-1962.
[16]
Turan-Zitouni, G.; Özdemir, A.; Güven, K. Synthesis of some 1-[(N,N-disubstitutedthiocarbamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial and antifungal activities. Arch. Pharm. Chem. Life Sci., 2005, 338, 96-104.
[17]
Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, Ö.D. New Pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45, 4383-4387.
[18]
Özdemir, A.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Revial, G.; Demirci, F.; İşcan, G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J. Enzyme Inhib. Med. Chem., 2010, 25, 565-571.
[19]
Shaaban, M.R.; Mayhoub, A.S.; Farag, A.M. Recent advances in the therapeutic applications of pyrazolines. Expert Opin. Ther. Pat., 2012, 22, 253-291.
[20]
Altintop, M.D.; Özdemir, A.; Kaplancikli, Z.A.; Turan-Zitouni, G.; Temel, H.E.; Çiftçi Gülşen, A. Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm. Chem. Life Sci., 2013, 346, 189-199.
[21]
Marella, A.; Ali, M.R.; Alam, M.T.; Saha, R.; Tanwar, O.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Pyrazolines: A biological review. Mini Rev. Med. Chem., 2013, 13, 921-931.
[22]
Özdemir, A.; Altintop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Karaca, H.; Tunalı, Y. Synthesis and biological evaluation of pyrazoline derivatives bearing an indole moiety as new antimicrobial agents. Arch. Pharm. Chem. Life Sci., 2013, 346, 463-469.
[23]
Özdemir, A.; Altıntop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Çiftçi, G.A.; Ulusoylar Yıldırım, Ş. Synthesis of 1-acetyl-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and evaluation of their anticancer activity. J. Enzyme Inhib. Med. Chem., 2013, 28, 1221-1227.
[24]
Alex, J.M.; Kumar, R. 4,5-Dihydro-1H-pyrazole: An indispensable scaffold. J. Enzyme Inhib. Med. Chem., 2014, 29, 427-442.
[25]
Karabacak, M.; Altıntop, M.D.; Çiftçi, H.İ.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20, 19066-19084.
[26]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirel, R.; Kaplancıklı, Z.A. A novel series of thiazolylpyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity. Eur. J. Med. Chem., 2015, 92, 342-352.
[27]
Shamsuzzaman, K. H.; Dar, A.M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20, 7-12.
[28]
Shahavar Sulthana, S.; Arul Antony, S.; Balachandran, C.; Syed Shafi, S. Thiophene and benzodioxole appended thiazolylpyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25, 2753-2757.
[29]
Leite, A.C.; da Silva, K.P.; de Souza, I.A.; de Araújo, J.M.; Brondani, D.J. Synthesis, antitumour and antimicrobial activities of new peptidyl derivatives containing the 1,3-benzodioxole system. Eur. J. Med. Chem., 2004, 39, 1059-1065.
[30]
Attia, M.I.; El-Brollosy, N.R.; Kansoh, A.L.; Ghabbour, H.A.; Al-Wabli, R.I.; Fun, H.K. Synthesis, single crystal X-ray structure, and antimicrobial activity of 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-[2-(morpholin-4-yl)ethyl]sulfanylpyrimidin-4(3H)-one. J. Chem., 2014, 2014, 1-8.
[31]
White, K.S.; Nicoletti, G.; Borland, R. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor. Open Med. Chem. J., 2014, 8, 1-16.
[32]
Gowri, M.; Sofi Beaula, W.; Biswal, J.; Dhamodharan, P.; Saiharish, R. Rohan prasad, S.; Pitani, R.; Kandaswamy, D.; Raghunathan, R.; Jeyakanthan, J.; Rayala, S.K.; Venkatraman, G. β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14α-demethylase and cAMP pathway. Biochim. Biophys. Acta, 2016, 1860, 636-647.
[33]
Sun, B.; Huang, W.; Liu, M. Evaluation of the combination mode of azoles antifungal inhibitors with CACYP51 and the influence of site-directed mutation. J. Mol. Graph. Model., 2017, 73, 157-165.
[34]
Koçyiğit-Kaymakçıoğlu, B.; Beyhan, N.; Tabanca, N.; Ali, A.; Wedge, D.E.; Duke, S.O.; Bernier, U.R.; Khan, I.A. Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Med. Chem. Res., 2015, 24, 3632-3644.
[35]
Reference Method for Broth Dilution Antifungal Susceptibility
Testing of Yeasts; Approved Standard, M27-A2; Clinical and
Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2002.
[36]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirci, F.; Kaplancıklı, Z.A. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19, 14809-14820.
[37]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 16, 55-63.
[38]
Keiser, K.; Johnson, C.C.; Tipton, D.A. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J. Endod., 2000, 26, 288-291.
[39]
Altıntop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Özdemir, A.; İşcan, G.; Akalın, G.; Ulusoylar Yıldırım, Ş. Synthesis and anticandidal activity of new triazolothiadiazine derivatives. Eur. J. Med. Chem., 2011, 46, 5562-5566.
[41]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[42]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.
[43]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett., 2016, 27, 380-386.
[44]
Höltje, H.D.; Fattorusso, C. Construction of a model of the Candida albicans lanosterol 14α-demethylase active site using the homology modelling technique. Pharm. Acta Helv., 1998, 72, 271-277.
[45]
Park, H.G.; Lee, I.S.; Chun, Y.J.; Yun, C.H.; Johnston, J.B.; Montellano, P.R.; Kim, D. Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans. Arch. Biochem. Biophys., 2011, 509, 9-15.
[46]
Becher, R.; Wirsel, S.G. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol., 2012, 95, 825-840.
[47]
Singh, A.; Paliwal, S.K.; Sharma, M.; Mittal, A.; Sharma, S.; Sharma, J.P. In silico and in vitro screening to identify structurally diversenon-azole CYP51 inhibitors as potent antifungal agent. J. Mol. Graph. Model., 2016, 63, 1-7.
[48]
Stana, A.; Vodnar, D.C.; Tamaian, R.; Pîrnău, A.; Vlase, L.; Ionuț, I.; Oniga, O.; Tiperciuc, B. Design, synthesis and antifungal activity evaluation of new thiazolin-4-ones as potential lanosterol 14α-demethylase inhibitors. Int. J. Mol. Sci., 2017, 18, 177-202.
[49]
Jacob, K.S.; Ganguly, S.; Kumar, P.; Poddar, R.; Kumar, A. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14α-demethylase, a target enzyme for antifungal therapy. J. Biomol. Struct. Dyn., 2017, 35, 1446-1463.