Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review

Author(s): Vinod Kumar Gupta*, Njud S. Alharbie, Shilpi Agarwal and Vladimir A. Grachev

Volume 15, Issue 2, 2019

Page: [131 - 135] Pages: 5

DOI: 10.2174/1573411014666180319151407

Price: $65

Abstract

Background: Nanomaterials have numerous potential applications in many areas such as electronics, optoelectronics, catalysis and composite materials. Particularly, one dimensional (1D) nanomaterials such as nanobelts, nanorods, and nanotubes can be used as either functional materials or building blocks for hierarchical nanostructures. 1D nanostructure plays a very important role in sensor technology.

Objective: In the current review, our efforts are directed toward recent review on the use of 1D nanostructure materials which are used in the literature for developing high-performance gas sensors with fast response, quick recovery time and low detection limit. This mini review also focuses on the methods of synthesis of 1D nanostructural sensor array, sensing mechanisms and its application in sensing of different types of toxic gases which are fatal for human mankind. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of 1D nanostructure sensors will have to address are also discussed.

Keywords: ID nanostructure, sensor, response time, detection limit, stability, gas sensing.

Graphical Abstract

[1]
Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem., 2005, 108, 2-14.
[2]
Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem., 1999, 57, 1-16.
[3]
Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett., 2005, 3, 274-295.
[4]
Moos, R. A brief overview on automotive exhaust gas sensors based on electroceramics. Int. J. Appl. Ceram. Technol., 2005, 2, 401-413.
[5]
Janke, D. A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts. Solid State Ion., 1981, 3-4, 599-604.
[6]
Moos, R.; Schönauer, D. Review: Recent developments in the field of automotive exhaust gas ammonia sensing. Sens. Lett., 2008, 6, 821-825.
[7]
Zosel, J.; Müller, R.; Vashook, V.; Guth, U. Response behaviour of perovskites and Au/oxide composites as HC-electrodes in different combustibles. Solid State Ion., 2004, 175, 531-533.
[8]
Wang, Z.; Hu, X. Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films, 1999, 352, 62-65.
[9]
Vaishanv, V.S.; Patel, P.D.; Patel, N.G. Indium tin oxide thin-film sensor for detection of Volatile Organic Compounds (VOCs). Mater. Manuf. Process., 2006, 21, 257-261.
[10]
Barbi, G.B.; Santos, J.P.; Serrini, P.; Gibson, P.N.; Horrillo, M.C.; Manes, L. Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments. Sens. Actuators B Chem., 1995, 25, 559-563.
[11]
Patel, N.G.; Makhija, K.K.; Panchal, C.J. Fabrication of carbon dioxide gas sensor and its alarm system using Indium Tin Oxide (ITO) thin films. Sens. Actuators B Chem., 1994, 21, 193-197.
[12]
Hoefer, U. Kühner, G.; Schweizer, W.; Sulz, G.; Steiner, K. CO and CO2 thin-film SnO2 gas sensors on Si substrates. Sens. Actuators B Chem., 1994, 22, 115-119.
[13]
Kanazawa, E.; Sakai, G.; Shimanoe, K.; Kanmura, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Metal oxide semiconductor N2O sensor for medical use. Sens. Actuators B Chem., 2001, 77, 72-77.
[14]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and W---Ti---O thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuators B Chem., 2002, 86, 75-80.
[15]
Chung, W.Y.; Sakai, G.; Shimanoe, G.; Miura, N.; Lee, D.D.; Yamazoe, N. Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens. Actuat. B., 1998, 46, 139-145.
[16]
Shieh, J.; Feng, H.M.; Hon, M.H.; Juang, H.Y. WO3 and WTiO thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuat. B., 2002, 86, 75-80.
[17]
Winter, R.; Scharnagl, K.; Fuchs, A.; Doll, T.; Eisele, I. Molecular beam evaporation-grown indium oxide and indium aluminium films for low-temperature gas sensors. Sens. Actuat. B., 2000, 66, 85-87.
[18]
Steffes, H.; Imawan, C.; Solzbacher, F.; Obermeier, E. Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sens. Actuators B Chem., 2001, 78, 106-112.
[19]
Jones, T.A.; Bott, B. Gas-induced electrical conductivity changes in metal phthalocyanines. Sens. Actuators, 1986, 9, 27-37.
[20]
Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949.
[21]
Wang, Z.L.; Pan, Z.W.; Dai, Z.R. US Patent No: 0094450, A1, 2002.
[22]
Yazawa, M.; Koguchi, M.; Muto, A.; Ozawa, M.; Hiruma, K. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett., 1992, 61, 2051.
[23]
Adachi, M.; Harada, T. Formation of huge length silica nanotubes by a templating mechanism in the Laurylamine/Tetraethoxysilane System. Langmuir, 1999, 15, 7097.
[24]
Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature (London), 1998, 391, 775.
[25]
Choi, Y.C.; Kim, W.S.; Park, Y.S.; Lee, S.M.; Bae, D.J.; Lee, H.Y.; Park, G.S.; Choi, W.B.; Lee, N.S.; Kim, J.M. Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge. Adv. Mater., 2000, 12, 746-750.
[26]
Morales, A.M.; Leiber, C.M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279, 208.
[27]
Trentler, T.J.; Hickman, K.M.; Goel, S.C.; Viano, A.M.; Gibbons, P.C.; Buhro, W.E. Solution-Liquid-Solid growth of crystalline III-V Semiconductors: An analogy to vapor-liquid-solid growth. Science, 1995, 270, 1791.
[28]
Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett., 2002, 2, 1333.
[29]
Fu, Y.Y.; Wang, R.M.; Xu, J.; Chen, J.; Yan, Y.; Narlikar, A.V.; Zhang, H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett., 2003, 379, 373.
[30]
Özgür, Ü.; Alivov, Ya.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 2005, 98, 041301.
[31]
Grosse, P.; Schmitte, F.J.; Frank, G.; Kostlin, H. Preparation and growth of SnO2 thin films and their optical and electrical properties. Thin Solid Films, 1982, 90, 309-315.
[32]
Bellingham, J.R.; Mackenzie, A.P.; Phillips, W.A. Precise measurements of oxygen-content - oxygen vacancies in transparent conducting indium oxide-films. Appl. Phys. Lett., 1991, 58, 2506-2508.
[33]
Qian, L.H.; Wang, K. Li., Y.; Fang, H.T.; Lu, Q.H.; Ma, X.L. CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys., 2006, 10, 82-84.
[34]
Kuang, Q.; Lao, C.S.; Wang, Z.L.; Xie, Z.X.; Zheng, L.S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc., 2007, 129, 6070-6071.
[35]
Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C, 2008, 112, 11539-11544.
[36]
Kumar, V.; Sen, S.; Muthe, K.P.; Gaur, N.K.; Gupta, S.K.; Yakhmi, J.V. Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens. Actuat. B., 2009, 138, 587-590.
[37]
Choi, S.H.; Yee, S.M.; Ji, H.J.; Choi, J.W.; Cho, Y.S.; Kim, G.T. Smart gas sensor and noise properties of single ZnO nanowire. Jpn. J. Appl. Phys., 2009, 48, 06FD13.
[38]
Zeng, Z.M.; Wang, K.; Zhang, Z.X.; Chen, J.J.; Zhou, W.L. The detection of H2S at room by using individual indium oxide nanowire transistors. Nanotechnology, 2009, 20, 045503.
[39]
Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett., 2005, 5, 667-673.
[40]
Chen, X.H.; Moskovits, M. Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett., 2007, 7, 807-812.
[41]
Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C, 2008, 112, 9061-9065.
[42]
Comini, E.; Faglia, G.; Sberveglieri, Z.G.; Pan, W.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett., 2002, 81, 1869-1871.
[43]
Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett., 2006, 86, 23510-123512.
[44]
Tien, L.C.; Sadik, P.W.; Norton, D.P.; Voss, L.F.; Pearton, S.J.; Wang, H.T.; Kang, B.S.; Ren, F.; Jun, J.; Lin, J. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl. Phys. Lett., 2005, 87, 222106-222108.
[45]
Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett., 2005, 86, 243503-243505.
[46]
Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. Detection of NO2 down to ppb levels using individual and multiple In2 O3 nanowire devices. Nano Lett., 2004, 4, 1919-1924.
[47]
Snow, E.S.; Perkins, F.K.; Robinson, J.A. Chemical vapor detection using single-walled carbon nanotubes. Chem. Soc. Rev., 2006, 35, 790-798.
[48]
Francioso, L.; Taurino, A.M.; Forleo, A.; Siciliano, P. TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuators B., 2008, 130, 70-76.
[49]
Kim, D.I.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M.; Tuller, H.L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett., 2006, 6, 2009-2013.
[50]
Tai, W.P.; Oh, J.H. Fabrication and humidity sensing properties of nanostructured TiO2 -SnO2 thin films. Sens. Actuat. B., 2002, 85, 154-157.
[51]
Liu, J.; Wang, X.; Peng, Q.; Li, Y. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater., 2005, 17, 764-767.
[52]
Raible, I.; Burghard, M.; Schlecht, U.; Yasuda, A.; Vossmeyer, T. V2 O5 nanofibers: Novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuat. B., 2005, 106, 730-735.
[53]
Gou, X.; Wang, G.; Yang, J.; Park, J.; Wexler, D. Chemical synthesis, characterization and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem., 2008, 18, 965-969.
[54]
Wang, C.; Fu, X.Q.; Xue, X.Y.; Wang, Y.G.; Wang, T.H. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption. Nanotechnology, 2007, 18, 145506-145510.
[55]
Polleux, J.; Gurlo, A.; Barsan, N.; Weimar, U.; Antonietti, M.; Niederberger, M. Template-free synthesis and assembly of singlecrystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed., 2006, 45, 261-265.
[56]
Rout, C.S.; Ganesh, K.; Govindaraj, A.; Rao, C.N.R. Sensors for the nitrogen oxides, NO2, NO, and N2 O, based on In2 O3 and WO3 nanowires. Appl. Phys., A., 2006, 85, 241-246.
[57]
Kim, Y.S.; Ha, S.C.; Kim, K. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Appl. Phys. Lett., 2005, 86, 213105-1-213105-3.
[58]
Raible, I.; Burghard, M.; Schlecht, U.; Yasuda, A.; Vossmeyer, T. V2O5 nanofibres: Novel gas sensors with extremely high sensitivity and selectivity to amines. Sens. Actuators B Chem., 2005, 106(2), 730-735.
[59]
Liu, J.; Wang, X.; Peng, Q.; Y, Li. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater., 2005, 17, 764-767.
[60]
Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2 O3 nanowires by doping control. Appl. Phys., A., 2004, 79, 439-442.
[61]
Short, L.C.; Benter, T. Selective measurement of HCHO in urine using direct liquid-phase fluorimetric analysis. Clin. Chem. Lab. Med., 2005, 43, 178-182.
[62]
Gupta, V.K.; Naveen, M.; Kumawat, L.; Singh, A.K. Selective naked-eye detection of Mg2+ ion using a coumarin-derived fluorescent probe. Sens. Actuator. B., 2015, 207, 216-223.
[63]
Yola, M.L.; Gupta, V.K.; Tanju , Eren.; Şen, A.E. Atar., N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[64]
Gupta, V.K.; Mergu, N.; Kumawat, L.K.; Singh, A.K. A reversible fluorescence “off-on-off” sensor for sequential detection of Aluminum and Acetate/Fluoride ions. Talanta, 2015, 144, 80-89.
[65]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Beitollahi, H.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. Modification of pencil graphite electrode surface by polypyrrolee/functionalize multiwall carbon nanotubes; Application for the preparation of DNA biosensor for 6-mercatopurine anticancer drug detection. Ind. Eng. Chem. Res., 2015, 54(14), 3634-3639.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy