Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Application of Advanced Electrochemical Methods with Nanomaterial-based Electrodes as Powerful Tools for Trace Analysis of Drugs and Toxic Compounds

Author(s): Parviz Norouzi*, Bagher Larijani, Taher Alizadeh, Eslam Pourbasheer, Mostafa Aghazadeh and Mohammad Reza Ganjali

Volume 15, Issue 2, 2019

Page: [143 - 151] Pages: 9

DOI: 10.2174/1573411014666180316170607

Price: $65

Abstract

Background: The new progress in electronic devices has provided a great opportunity for advancing electrochemical instruments by which we can more easily solve many problems of interest for trace analysis of compounds, with a high degree of accuracy, precision, sensitivity, and selectivity. On the other hand, in recent years, there is a significant growth in the application of nanomaterials for the construction of nanosensors due to enhanced chemical and physical properties arising from discrete modified nanomaterial-based electrodes or microelectrodes.

Objective: Combination of the advanced electrochemical system and nanosensors make these devices very suitable for the high-speed analysis, as motioning and portable devices. This review will discuss the recent developments and achievements that have been reported for trace measurement of drugs and toxic compounds for environment, food and health application.

Keywords: Advanced electrochemical methods, nanomaterials, drugs and toxic compounds, trace analysis, drugs, toxic compounds.

Graphical Abstract

[1]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[2]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[3]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[4]
Lamani, S.D.; Teradale, A.B.; Unki, S.N.; Nandibewoor, S.T. Electrochemical oxidation and determination of methocarbamol at Multi-walled Carbon Nanotubes-Modified Glassy Carbon Electrode. Anal. Bioanal. Electrochem., 2016, 8, 304-317.
[5]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[6]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan. Inst. Chem. Eng., 2017, 80, 989-996.
[7]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of vitamin B6 using carbon paste electrode modified with 1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO Nanoparticles. Electroanalysis, 2017, 29(8), 1854-1859.
[8]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9(44), 6228-6234.
[9]
Jana, S.; Mondal, G.; Mitra, B.C.; Bera, P.; Chakraborty, B.; Mondal, A.; Ghosh, A. Facile synthesis of nickel oxide thin films from PVP encapsulated nickel sulfide thin films: an efficient material for electrochemical sensing of glucose, hydrogen peroxide and photodegradation of dye. New J. Chem., 2017, 41(24), 14985-14994.
[10]
Maulidiyah, Tribawono. D.S.; Wibowo, D.; Nurdin, M. Electrochemical Profile Degradation of Amino Acid by Flow System using TiO2/Ti Nanotubes Electrode. Anal. Bioanal. Electrochem, 2016, 8, 761-776.
[11]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal. Methods, 2017, 10(11), 3773-3780.
[12]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25(4), 1000-1007.
[13]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[14]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[15]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[16]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[17]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A. R.; Moradi, Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[18]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel sensor based on 3-Mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of Cefixime. Anal. Bioanal. Electrochem, 2017, 9, 266-276.
[19]
Babaei, A. Nanomolar simultaneous determination of amlodipine and uric acid at the novel carbon paste electrode modified with magnetic carbon nanotubes/diatomite earth composite. Anal. Bioanal. Electrochem., 2016, 8, 489-504.
[20]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor. Biosens. Bioelectron., 2016, 86, 879-884.
[21]
Guo, Z.; Lin, X. Ultrafast cyclic voltammetry at scan rates of up to 3 MV s−1 through a single-opamp circuit with positive feedback compensation of ohmic drop. J. Electroanal. Chem., 2004, 568, 45-53.
[22]
Mofidi, Z.; Norouzi, P.; Seidi, S.; and Ganjali, M.R. Determination of diclofenac using electromembrane extraction coupled with stripping FFT continuous cyclic voltammetry. Anal. Chim. Acta, 2017, 972, 38-45.
[23]
Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem., 2009, 81(6), 2378-2382.
[24]
Beitollahi, H.; Movlaee, K.; Ganjali, M.R.; Norouzi, P. A sensitive graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids. J. Electroanal. Chem., 2017, 799, 576-582.
[25]
Dezfuli, A.S.; Ganjali, M.R.; Jafari, H.; Faridbod, F. Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6176-6185.
[26]
Jafari, H.; Ganjali, M.R.; Dezfuli, A.S.; Faridbod, F. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl. Surf. Sci., 2018, 427, 496-506.
[27]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate. J. Electrochem. Soc., 2017, 164(6), H407-H412.
[28]
Moghaddam, M.R.; Ganjali, M.R.; Hosseini, M.; Faridbod, F.; Karimipur, M.R. A novel electrochemiluminescnece sensor based on an Ru(bpy)32+ - Eu2O3 - Nafion nanocomposite and its application in the detection of diphenhydramine. Int. J. Electrochem. Sci., 2017, 12(6), 5220-5232.
[29]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184(9), 3281-3289.
[30]
Norouzi, P.; Ganjali, H.; Larijani, B.; Ganjali, M.R.; Faridbod, F.; Zamani, H.A. A Glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2011, 6(11), 5189-5199.
[31]
Norouzi, P.; Pirali-Hamedan, M.; Ganjali, R. Candesartan cilexetil determination by electrode modified with hybrid film of ionic liquid- graphene nanosheets-silicon carbide nanoparticle using continuous coulometric fft cyclic voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2023-2033.
[32]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12(1), 305-315.
[33]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[34]
Rashedi, H.; Norouzi, P.; Ganjali, M.R. Determination of alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2479-2490.
[35]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal. Bioanal. Chem., 2016, 408(25), 7193-7202.
[36]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[37]
Ebrahimi, M.; Nikoofard, H.; Faridbod, F.; Dezfuli, A.S.; Beigizadeh, H.; Norouzi, P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J. Mater. Sci. Mater. Electron., 2017, 1, 1-9.
[38]
Bai, X.; Qin, C.; Huang, X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Mikrochim. Acta, 2016, 183(11), 2973-2981.
[39]
Pan, D.; Wang, Y.; Chen, Z.; Lou, T.; Qin, W. Nanomaterial/Ionophore-Based electrode for anodic stripping voltammetric determination of lead: An electrochemical sensing platform toward heavy metals. Anal. Chem., 2009, 81(12), 5088-5094.
[40]
Norouzi, P.; Pirali-Hamedani, M.; Ganjali, M.; Faridbod, F. A novel acetylcholinesterase biosensor based on chitosan-gold nanoparticles film for determination of monocrotophos using FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2010, 5, 1434-1446.
[41]
Norouzi, P.; Faridbod, F.; Larijani, B.; Ganjali, M.R. Glucose biosensor based on MWCNTs-gold nanoparticles in a nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2010, 5, 1213-1224.
[42]
Norouzi, P.; Faridbod, F.; Nasli-Esfahani, E.; Larijani, B.; Ganjali, M. Cholesterol biosensor based on MWCNTs-MnO2 nanoparticles using FFT continuous cyclic voltammetry. Int. J. EC Sci., 2010, 5(7), 1008-1017.
[43]
Ganjali, M.R.; Faridbod, F.; Nasli-Esfahani, E.; Larijani, B.; Rashedi, H.; Norouzi, P. FFT continuous cyclic voltammetry triglyceride dual enzyme biosensor based on MWCNTs-CeO2 Nanoparticles. Int. J. Electrochem. Sci., 2010, 5, 1422-1433.
[44]
Norouzi, P.; Larijani, B.; Faridbod, F.; Ganjali, M.R. Hydrogen peroxide biosensor based on hemoglobin immobilization on gold nanoparticle in FFT continuous cyclic voltammetry flow injection system. Int. J. Electrochem. Sci., 2010, 5(11), 1550-1562.
[45]
Zestos, A.G.; Yang, C.; Jacobs, C.B.; Hensley, D.; Venton, B.J. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst., 2015, 140(21), 7283-7292.
[46]
Chen, Y.; Yang, Y.; Tu, Y. An EC impedimetric immunosensor for ultrasensitive determination of ketamine hydrochloride. Sens. Actuat. B., 2013, 183, 150-156.
[47]
Krinke, D.; Jahnke, H.G.; Pänke, O.; Robitzki, A.A. A microelectrode-based sensor for label-free in vitro detection of ischemic effects on cardiomyocytes. Biosens. Bioelectron., 2009, 24(9), 2798-2803.
[48]
Meissner, R.; Eker, B.; Kasi, H.; Bertsch, A.; Renaud, P. Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening. Lab Chip, 2011, 11(14), 2352-2361.
[49]
Wu, B.; Wang, Z.; Zhao, D.; Lu, X. A novel molecularly imprinted impedimetric sensor for melamine determination. Talanta, 2012, 101, 374-381.
[50]
Yang, G.; Jin, W.; Wu, L.; Wang, Q.; Shao, H.; Qin, A.; Yu, B.; Li, D.; Cai, B. Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Anal. Chim. Acta, 2011, 706(1), 120-127.
[51]
Erdem, A.; Congur, G. Impedimetric detection of in situ interaction between anti-cancer drug bleomycin and DNA. Int. J. Biol. Macromol., 2013, 61, 295-301.
[52]
Istamboulié, G.; Paniel, N.; Zara, L.; Granados, L.R.; Barthelmebs, L.; Noguer, T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta, 2016, 146, 464-469.
[53]
Thavarungkul, P.; Dawan, S.; Kanatharana, P.; Asawatreratanakul, P. Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosens. Bioelectron., 2007, 23(5), 688-694.
[54]
Prodromidis, M.I. Impedimetric immunosensors—A review. Electrochim. Acta, 2010, 55(14), 4227-4233.
[55]
Chen, X.; Huang, Y.; Ma, X.; Jia, F.; Guo, X.; Wang, Z. Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Mikrochim. Acta, 2015, 182(9), 1709-1714.
[56]
Rafiee, B.; Fakhari, A.R.; Ghaffarzadeh, M. Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode. Sens. Actuat. B., 2015, 218, 271-279.
[57]
Derikvand, H.; Roushani, M.; Abbasi, A.R.; Derikvand, Z.; Azadbakht, A. Design of folding-based impedimetric aptasensor for determination of the nonsteroidal anti-inflammatory drug. Anal. Biochem., 2016, 513, 77-86.
[58]
Roushani, M.; Shahdost-fard, F. An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe. Mikrochim. Acta, 2016, 183(1), 185-193.
[59]
Shahdost-fard, F.; Roushani, M. An impedimetric aptasensor based on water soluble cadmium telluride (CdTe) quantum dots (QDs) for detection of ibuprofen. J. Electroanal. Chem., 2016, 763, 18-24.
[60]
Gholivand, M.B.; Jalalvand, A.R.; Goicoechea, H.C.; Skov, T. Fabrication of an ultrasensitive impedimetric buprenorphine hydrochloride biosensor from computational and experimental angles. Talanta, 2014, 124, 27-35.
[61]
Gholivand, M.B.; Jalalvand, A.R.; Goicoechea, H.C. Developing a novel computationally designed impedimetric pregabalin biosensor. Electrochim. Acta, 2014, 133, 123-131.
[62]
Liu, W.; Zhang, Y.; Zhang, X.; He, X.; Zhang, X.; Chen, J. Amplified impedimetric DNA sensor based on graphene oxide–phenylboronic acid for sensitive detection of bleomycins. New J. Chem., 2014, 38(6), 2284-2291.
[63]
Yin, F. Capacitive sensors using electropolymerized o-phenylenediamine film doped with ion-pair complex as selective elements for the determination of pentoxyverine. Talanta, 2004, 63(3), 641-646.
[64]
Poghossian, A.; Yoshinobu, T.; Simonis, A.; Ecken, H.; Lüth, H.; Schöning, M.J. Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens. Actuat. B., 2001, 78(1), 237-242.
[65]
Wang, K.; Jiang, D.; Kong, J.; Zhang, S.; Liu, B.; Lu, T. Sensitively detecting recombinant hirudin variant-2 with capacitive immunoassay based on self-assembled monolayers. Anal. Lett., 2003, 36(12), 2571-2583.
[66]
Sontimuang, C.; Suedee, R.; Dickert, F. Interdigitated capacitive biosensor based on molecularly imprinted polymer for rapid detection of Hev b1 latex allergen. Anal. Biochem., 2011, 410(2), 224-233.
[67]
Labib, M.; Hedström, M.; Amin, M.; Mattiasson, B. A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode. Anal. Chim. Acta, 2010, 659(1), 194-200.
[68]
Magnuszewska, J.; Krogulec, T.; Baranski, A. Fast Fourier transform square-wave voltammetry detection of phenothiazines in cappilary electrophoresis. Chem. Anal., 2000, 45(2), 189-203.
[69]
Smith, D.E. Fourier Transform Faradaic Admittance Measurements (FT-FAM): A Description and Some Applications.in Fourier, Hadamard, and Hilbert Transforms in Chemistry; Springer, 1982, pp. 453-525.
[70]
Daneshgar, P.; Norouzi, P.; Ganjali, R.M.; Dinarvand, R.; Moosavi-Movahedi, A.A. Determination of Diclofenac on a Dysprosium Nanowire- Modified carbon paste electrode accomplished in a flow injection system by advanced filtering. Sensors, 2009, 9(10), 7903-7918.
[71]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R. Application of a Continuous Square-Wave Potential Program for Sub Nano Molar Determination of Ketotifen. Chem. Pharm. Bull., 2009, 57(2), 117-121.
[72]
Norouzi, P.; Ganjali, M.R.; Dinarvand, R.; Eshraghi, M.H.; Zamani, H.A. New adsorptive square wave method for trace determination of prilocain in the flow injection system by a fast fourier analysis. Russ. J. Electrochem., 2010, 46(9), 999-1006.
[73]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[74]
Norouzi, P.; Haji-Hashemi, H.; Larijani, B.; Aghazadeh, M.; Pourbasheer, E.; Ganjali, M.R. Application of New Advanced EC Methods Combine with Nano-Based Materials Sensor in Drugs Analysis. Curr. Anal. Chem., 2017, 13(1), 70-80.
[75]
Norouzi, P.; Ganjali, M.R.; Meibodi, A.S.E. A Novel adsorptive square wave voltammetric method for pico molar monitoring of lorazepam at gold ultra microelectrode in a flow injection system by application of fast fourier transform analysis. Anal. Lett., 2008, 41(7), 1208-1224.
[76]
Norouzi, P.; Gupta, V.K.; Faridbod, F.; Pirali-Hamedani, M.; Larijani, B.; Ganjali, M.R. Carcinoembryonic antigen admittance biosensor based on Au and ZnO nanoparticles using FFT admittance voltammetry. Anal. Chem., 2011, 83(5), 1564-1570.
[77]
Kar, S.; Varma, S. Determination of silicon‐silicon dioxide interface state properties from admittance measurements under illumination. J. Appl. Phys., 1985, 58(11), 4256-4266.
[78]
Schwall, R.J.; Bond, A.M.; Smith, D.E. On-line FFT faradaic admittance measurements: An application of broadband admittance spectral data to more unambiguous characterization of quasi-reversible systems. J. Electroanal. Chem. Interfacial Electrochem., 1977, 85(2), 217-229.
[79]
Kovar, K.A.; El-Yazbi, F. Determination of cholesterol in sera. Clin. Chim. Acta, 1983, 132(3), 257-265.
[80]
Creason, S.C.; Smith, D.E. Fourier transform faradaic admittance measurements II. Ultra-rapid, high precision acquisition of the frequency response profile. J. Electroanal. Chem. Interfacial Electrochem., 1972, 40(1), A1-A5.
[81]
Nakagawara, M.; Yamakoshi, K. A portable instrument for non-invasive monitoring of beat-by-beat cardiovascular haemodynamic parameters based on the volume-compensation and electrical-admittance method. Med. Biol. Eng. Comput., 2000, 38(1), 17-25.
[82]
Shih, Y.; Zen, J.M.; Yang, H.H. Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode. J. Pharm. Biomed. Anal., 2002, 29(5), 827-833.
[83]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[84]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[85]
Jain, R.; Rather, J.A. Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode. Coll. Surf. B., 2011, 83(2), 340-346.
[86]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[87]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[88]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based EC sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51, 91-99.
[89]
Mirabi-Semnakolaii, A.; Daneshgar, P.; Moosavi-Movahedi, A.A.; Rezayat, M.; Norouzi, P.; Nemati, A.; Farhadi, M. Sensitive determination of herbicide trifluralin on the surface of copper nanowire EC sensor. J. Solid State Electrochem., 2011, 15(9), 1953-1961.
[90]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R.; Ordikhani-Seyedlar, A.; Eshraghi, H. A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method. Coll. Surface. B., 2009, 68(1), 27-32.
[91]
Daneshgar, P.; Norouzi, P.; Moosavi-Movahedi, A.A.; Ganjali, M.R.; Haghshenas, E.; Dousty, F.; Farhadi, M. Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J. Appl. Electrochem., 2009, 39(10), 1983.
[92]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R.; Dousty, F. A dysprosium nanowire modified carbon paste electrode for determination of nanomplar level of diphenhydramin by continuous square wave voltammetry in flow injection system. Int. J. Electrochem. Sci., 2009, 4, 444-457.
[93]
Norouzi, P.; Gupta, V.K.; Larijani, B.; Rasoolipour, S.; Faridbod, F.; Ganjali, M.R. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode. Talanta, 2015, 131, 577-584.
[94]
Norouzi, P.; Larijani, B.; Ganjali, M.; Faridbod, F. Admittometric EC determination of atrazine by nano-composite immune-biosensor using FFT-square wave voltammetry. Int. J. Electrochem. Sci., 2012, 7(11), 10414-10426.
[95]
Norouzi, P.; Larijani, B.; Ganjali, M.; Faridbod, F. Determination of rutin in pharmaceutical formulations using admittance biosensor based on DNA and nano composite film using coulometric FFT admittance voltammetry. Int. J. Electrochem. Sci., 2014, 9, 3130-3143.
[96]
Norouzi, P.; Larijani, B.; Faridbod, F.; Ganjali, M.R. Determination of cefoperazone based on nano-composite electrode using coulometric FFT admittance voltammetry. Int. J. Electrochem. Sci., 2013, 8, 6118-6130.
[97]
Norouzi, P.; Alahdadi, I.; Shahtaheri, S.J. Determination of ochratoxin at nanocomposite modified glassy carbon electrode combine with FFT coulometric admittance voltammetry and flow injection analysis. Int. J. Electrochem. Sci., 2015, 10, 3400-3413.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy