Review Article

ER氨肽酶1和2的抑制剂:从设计到临床应用

卷 26, 期 15, 2019

页: [2715 - 2729] 页: 15

弟呕挨: 10.2174/0929867325666180214111849

价格: $65

摘要

内质网氨肽酶1和2是两种同源酶,其有助于产生肽配体以供主要组织相容性I类分子呈递。 它们的酶活性影响抗原肽库并间接控制适应性免疫应答。 越来越多的证据表明,这两种酶是免疫反应调节的易处理靶点,可能的应用范围从癌症免疫治疗到治疗炎症性自身免疫疾病。 在这里,我们回顾了ERAP1和ERAP2抑制剂开发的最新技术,以及它们在临床应用中的潜力和局限性。

关键词: 免疫系统,抗原,肽,酶,抑制剂,癌症,自身免疫,感染。

[1]
Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol., 2016, 37(11), 724-737.
[http://dx.doi.org/10.1016/j.it.2016.08.010] [PMID: 27614798]
[2]
Rock, K.L.; Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol., 1999, 17, 739-779.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.739] [PMID: 10358773]
[3]
Cascio, P.; Hilton, C.; Kisselev, A.F.; Rock, K.L.; Goldberg, A.L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J., 2001, 20(10), 2357-2366.
[http://dx.doi.org/10.1093/emboj/20.10.2357] [PMID: 11350924]
[4]
Androlewicz, M.J.; Anderson, K.S.; Cresswell, P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 9130-9134.
[http://dx.doi.org/10.1073/pnas.90.19.9130] [PMID: 8415666]
[5]
Lundegaard, C.; Lund, O.; Buus, S.; Nielsen, M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 2010, 130(3), 309-318.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03300.x] [PMID: 20518827]
[6]
Tsujimoto, M.; Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta, 2005, 1751(1), 9-18.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.011] [PMID: 16054015]
[7]
Serwold, T.; Gonzalez, F.; Kim, J.; Jacob, R.; Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature, 2002, 419(6906), 480-483.
[http://dx.doi.org/10.1038/nature01074] [PMID: 12368856]
[8]
Saric, T.; Chang, S.C.; Hattori, A.; York, I.A.; Markant, S.; Rock, K.L.; Tsujimoto, M.; Goldberg, A.L. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol., 2002, 3(12), 1169-1176.
[http://dx.doi.org/10.1038/ni859] [PMID: 12436109]
[9]
York, I.A.; Chang, S.C.; Saric, T.; Keys, J.A.; Favreau, J.M.; Goldberg, A.L.; Rock, K.L. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat. Immunol., 2002, 3(12), 1177-1184.
[http://dx.doi.org/10.1038/ni860] [PMID: 12436110]
[10]
Hammer, G.E.; Gonzalez, F.; James, E.; Nolla, H.; Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat. Immunol., 2007, 8(1), 101-108.
[http://dx.doi.org/10.1038/ni1409] [PMID: 17128277]
[11]
York, I.A.; Brehm, M.A.; Zendzian, S.; Towne, C.F.; Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 9202-9207.
[http://dx.doi.org/10.1073/pnas.0603095103] [PMID: 16754858]
[12]
Saveanu, L.; Carroll, O.; Lindo, V.; Del Val, M.; Lopez, D.; Lepelletier, Y.; Greer, F.; Schomburg, L.; Fruci, D.; Niedermann, G.; van Endert, P.M. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol., 2005, 6(7), 689-697.
[http://dx.doi.org/10.1038/ni1208] [PMID: 15908954]
[13]
Lorente, E.; Barriga, A.; Johnstone, C.; Mir, C.; Jiménez, M.; López, D. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases. PLoS One, 2013, 8(11)e79596
[http://dx.doi.org/10.1371/journal.pone.0079596] [PMID: 24223975]
[14]
Barnea, E.; Melamed Kadosh, D.; Haimovich, Y.; Satumtira, N.; Dorris, M.L.; Nguyen, M.T.; Hammer, R.E.; Tran, T.M.; Colbert, R.A.; Taurog, J.D.; Admon, A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the effect of Erap1 Deletion. Mol. Cell. Proteomics, 2017, 16(4), 642-662.
[http://dx.doi.org/10.1074/mcp.M116.066241] [PMID: 28188227]
[15]
Chen, L.; Fischer, R.; Peng, Y.; Reeves, E.; McHugh, K.; Ternette, N.; Hanke, T.; Dong, T.; Elliott, T.; Shastri, N.; Kollnberger, S.; James, E.; Kessler, B.; Bowness, P. Critical role of endoplasmic reticulum aminopeptidase 1 in determining the length and sequence of peptides bound and presented by HLA-B27. Arthritis Rheumatol., 2014, 66(2), 284-294.
[http://dx.doi.org/10.1002/art.38249] [PMID: 24504800]
[16]
Martín-Esteban, A.; Guasp, P.; Barnea, E.; Admon, A.; López de Castro, J.A. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells. Arthritis Rheumatol., 2016, 68(10), 2466-2475.
[http://dx.doi.org/10.1002/art.39734] [PMID: 27110896]
[17]
Blanchard, N.; Kanaseki, T.; Escobar, H.; Delebecque, F.; Nagarajan, N.A.; Reyes-Vargas, E.; Crockett, D.K.; Raulet, D.H.; Delgado, J.C.; Shastri, N. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol., 2010, 184(6), 3033-3042.
[http://dx.doi.org/10.4049/jimmunol.0903712] [PMID: 20173027]
[18]
Nagarajan, N.A.; de Verteuil, D.A.; Sriranganadane, D.; Yahyaoui, W.; Thibault, P.; Perreault, C.; Shastri, N. ERAAP shapes the peptidome associated with classical and nonclassical MHC Class I molecules. J. Immunol., 2016, 197(4), 1035-1043.
[http://dx.doi.org/10.4049/jimmunol.1500654] [PMID: 27371725]
[19]
Alvarez-Navarro, C.; López de Castro, J.A. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol. Immunol., 2014, 57(1), 12-21.
[http://dx.doi.org/10.1016/j.molimm.2013.06.012] [PMID: 23916068]
[20]
Fruci, D.; Romania, P.; D’Alicandro, V.; Locatelli, F. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases. Tissue Antigens, 2014, 84(2), 177-186.
[http://dx.doi.org/10.1111/tan.12410] [PMID: 25066018]
[21]
Kim, S.; Lee, S.; Shin, J.; Kim, Y.; Evnouchidou, I.; Kim, D.; Kim, Y.K.; Kim, Y.E.; Ahn, J.H.; Riddell, S.R.; Stratikos, E.; Kim, V.N.; Ahn, K. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol., 2011, 12(10), 984-991.
[http://dx.doi.org/10.1038/ni.2097] [PMID: 21892175]
[22]
Blanchard, N.; Gonzalez, F.; Schaeffer, M.; Joncker, N.T.; Cheng, T.; Shastri, A.J.; Robey, E.A.; Shastri, N. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat. Immunol., 2008, 9(8), 937-944.
[http://dx.doi.org/10.1038/ni.1629] [PMID: 18587399]
[23]
James, E.; Bailey, I.; Sugiyarto, G.; Elliott, T. Induction of protective antitumor immunity through attenuation of ERAAP function. J. Immunol., 2013, 190(11), 5839-5846.
[http://dx.doi.org/10.4049/jimmunol.1300220] [PMID: 23610143]
[24]
Cifaldi, L.; Lo Monaco, E.; Forloni, M.; Giorda, E.; Lorenzi, S.; Petrini, S.; Tremante, E.; Pende, D.; Locatelli, F.; Giacomini, P.; Fruci, D. Natural killer cells efficiently reject lymphoma silenced for the endoplasmic reticulum aminopeptidase associated with antigen processing. Cancer Res., 2011, 71(5), 1597-1606.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3326] [PMID: 21252114]
[25]
Keller, M.; Ebstein, F.; Bürger, E.; Textoris-Taube, K.; Gorny, X.; Urban, S.; Zhao, F.; Dannenberg, T.; Sucker, A.; Keller, C.; Saveanu, L.; Krüger, E.; Rothkötter, H.J.; Dahlmann, B.; Henklein, P.; Voigt, A.; Kuckelkorn, U.; Paschen, A.; Kloetzel, P.M.; Seifert, U. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition. Eur. J. Immunol., 2015, 45(12), 3257-3268.
[http://dx.doi.org/10.1002/eji.201445243] [PMID: 26399368]
[26]
Stratikos, E. Modulating antigen processing for cancer immunotherapy. OncoImmunology, 2014, 3(1)e27568
[http://dx.doi.org/10.4161/onci.27568] [PMID: 24744979]
[27]
Cifaldi, L.; Romania, P.; Lorenzi, S.; Locatelli, F.; Fruci, D. Role of endoplasmic reticulum aminopeptidases in health and disease: from infection to cancer. Int. J. Mol. Sci., 2012, 13(7), 8338-8352.
[http://dx.doi.org/10.3390/ijms13078338] [PMID: 22942706]
[28]
López de Castro, J.A.; Alvarez-Navarro, C.; Brito, A.; Guasp, P.; Martín-Esteban, A.; Sanz-Bravo, A. Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: Towards a unifying view. Mol. Immunol., 2016, 77, 193-204.
[http://dx.doi.org/10.1016/j.molimm.2016.08.005] [PMID: 27522479]
[29]
Hattori, A.; Tsujimoto, M. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J. Biochem., 2013, 154(3), 219-228.
[http://dx.doi.org/10.1093/jb/mvt066] [PMID: 23946506]
[30]
Mehta, A.M.; Jordanova, E.S.; Corver, W.E.; van Wezel, T.; Uh, H.W.; Kenter, G.G.; Jan Fleuren, G. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosomes Cancer, 2009, 48(5), 410-418.
[http://dx.doi.org/10.1002/gcc.20648] [PMID: 19202550]
[31]
Steinbach, A.; Winter, J.; Reuschenbach, M.; Blatnik, R.; Klevenz, A.; Bertrand, M.; Hoppe, S.; von Knebel Doeberitz, M.; Grabowska, A.K.; Riemer, A.B. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism. OncoImmunology, 2017, 6(7)e1336594
[http://dx.doi.org/10.1080/2162402X.2017.1336594] [PMID: 28811980]
[32]
Stratikos, E.; Stamogiannos, A.; Zervoudi, E.; Fruci, D. A role for naturally occurring alleles of endoplasmic reticulum aminopeptidases in tumor immunity and cancer pre-disposition. Front. Oncol., 2014, 4, 363.
[http://dx.doi.org/10.3389/fonc.2014.00363] [PMID: 25566501]
[33]
Goto, Y.; Hattori, A.; Ishii, Y.; Tsujimoto, M. Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett., 2006, 580(7), 1833-1838.
[http://dx.doi.org/10.1016/j.febslet.2006.02.041] [PMID: 16513116]
[34]
Evnouchidou, I.; Kamal, R.P.; Seregin, S.S.; Goto, Y.; Tsujimoto, M.; Hattori, A.; Voulgari, P.V.; Drosos, A.A.; Amalfitano, A.; York, I.A.; Stratikos, E. Cutting Edge: Coding single nucleotide polymorphisms of endoplasmic reticulum aminopeptidase 1 can affect antigenic peptide generation in vitro by influencing basic enzymatic properties of the enzyme. J. Immunol., 2011, 186(4), 1909-1913.
[http://dx.doi.org/10.4049/jimmunol.1003337] [PMID: 21242517]
[35]
Martín-Esteban, A.; Gómez-Molina, P.; Sanz-Bravo, A.; López de Castro, J.A. Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands. J. Biol. Chem., 2014, 289(7), 3978-3990.
[http://dx.doi.org/10.1074/jbc.M113.529610] [PMID: 24352655]
[36]
Reeves, E.; Edwards, C.J.; Elliott, T.; James, E. Naturally occurring ERAP1 haplotypes encode functionally distinct alleles with fine substrate specificity. J. Immunol., 2013, 191(1), 35-43.
[http://dx.doi.org/10.4049/jimmunol.1300598] [PMID: 23733883]
[37]
Stamogiannos, A.; Koumantou, D.; Papakyriakou, A.; Stratikos, E. Effects of polymorphic variation on the mechanism of Endoplasmic Reticulum Aminopeptidase 1. Mol. Immunol., 2015, 67(2 Pt B), 426-435.
[http://dx.doi.org/10.1016/j.molimm.2015.07.010] [PMID: 26224046]
[38]
Stratikos, E.; Stern, L.J. Antigenic peptide trimming by ER aminopeptidases--insights from structural studies. Mol. Immunol., 2013, 55(3-4), 212-219.
[http://dx.doi.org/10.1016/j.molimm.2013.03.002] [PMID: 23545452]
[39]
Vanhille, D.L.; Hill, L.D.; Hilliard, D.D.; Lee, E.D.; Teves, M.E.; Srinivas, S.; Kusanovic, J.P.; Gomez, R.; Stratikos, E.; Elovitz, M.A.; Romero, R.; Strauss, J.F. III A Novel ERAP2 Haplotype Structure in a Chilean Population: Implications for ERAP2 Protein Expression and Preeclampsia Risk. Mol. Genet. Genomic Med., 2013, 1(2), 98-107.
[http://dx.doi.org/10.1002/mgg3.13] [PMID: 24040622]
[40]
Andrés, A.M.; Dennis, M.Y.; Kretzschmar, W.W.; Cannons, J.L.; Lee-Lin, S.Q.; Hurle, B.; Schwartzberg, P.L.; Williamson, S.H.; Bustamante, C.D.; Nielsen, R.; Clark, A.G.; Green, E.D.; Green, E.D. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet., 2010, 6(10)e1001157
[http://dx.doi.org/10.1371/journal.pgen.1001157] [PMID: 20976248]
[41]
Evnouchidou, I.; Birtley, J.; Seregin, S.; Papakyriakou, A.; Zervoudi, E.; Samiotaki, M.; Panayotou, G.; Giastas, P.; Petrakis, O.; Georgiadis, D.; Amalfitano, A.; Saridakis, E.; Mavridis, I.M.; Stratikos, E. A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing. J. Immunol., 2012, 189(5), 2383-2392.
[http://dx.doi.org/10.4049/jimmunol.1200918] [PMID: 22837489]
[42]
García-Medel, N.; Sanz-Bravo, A.; Van Nguyen, D.; Galocha, B.; Gómez-Molina, P.; Martín-Esteban, A.; Alvarez-Navarro, C.; de Castro, J.A. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol. Cell. Proteomics, 2012, 11(11), 1416-1429.
[http://dx.doi.org/10.1074/mcp.M112.019588] [PMID: 22918227]
[43]
Chang, S.C.; Momburg, F.; Bhutani, N.; Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17107-17112.
[http://dx.doi.org/10.1073/pnas.0500721102] [PMID: 16286653]
[44]
Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol., 2011, 11(12), 823-836.
[http://dx.doi.org/10.1038/nri3084] [PMID: 22076556]
[45]
Zervoudi, E.; Papakyriakou, A.; Georgiadou, D.; Evnouchidou, I.; Gajda, A.; Poreba, M.; Salvesen, G.S.; Drag, M.; Hattori, A.; Swevers, L.; Vourloumis, D.; Stratikos, E. Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides. Biochem. J., 2011, 435(2), 411-420.
[http://dx.doi.org/10.1042/BJ20102049] [PMID: 21314638]
[46]
Hearn, A.; York, I.A.; Rock, K.L. The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J. Immunol., 2009, 183(9), 5526-5536.
[http://dx.doi.org/10.4049/jimmunol.0803663] [PMID: 19828632]
[47]
Evnouchidou, I.; Momburg, F.; Papakyriakou, A.; Chroni, A.; Leondiadis, L.; Chang, S.C.; Goldberg, A.L.; Stratikos, E. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS One, 2008, 3(11)e3658
[http://dx.doi.org/10.1371/journal.pone.0003658] [PMID: 18987748]
[48]
Nguyen, T.T.; Chang, S.C.; Evnouchidou, I.; York, I.A.; Zikos, C.; Rock, K.L.; Goldberg, A.L.; Stratikos, E.; Stern, L.J. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat. Struct. Mol. Biol., 2011, 18(5), 604-613.
[http://dx.doi.org/10.1038/nsmb.2021] [PMID: 21478864]
[49]
Gandhi, A.; Lakshminarasimhan, D.; Sun, Y.; Guo, H.C. Structural insights into the molecular ruler mechanism of the endoplasmic reticulum aminopeptidase ERAP1. Sci. Rep., 2011, 1, 186.
[http://dx.doi.org/10.1038/srep00186] [PMID: 22355701]
[50]
Mpakali, A.; Saridakis, E.; Harlos, K.; Zhao, Y.; Papakyriakou, A.; Kokkala, P.; Georgiadis, D.; Stratikos, E. Crystal structure of insulin-regulated aminopeptidase with bound substrate analogue provides insight on antigenic epitope precursor recognition and processing. J. Immunol., 2015, 195(6), 2842-2851.
[http://dx.doi.org/10.4049/jimmunol.1501103] [PMID: 26259583]
[51]
Birtley, J.R.; Saridakis, E.; Stratikos, E.; Mavridis, I.M. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. Biochemistry, 2012, 51(1), 286-295.
[http://dx.doi.org/10.1021/bi201230p] [PMID: 22106953]
[52]
Kochan, G.; Krojer, T.; Harvey, D.; Fischer, R.; Chen, L.; Vollmar, M.; von Delft, F.; Kavanagh, K.L.; Brown, M.A.; Bowness, P.; Wordsworth, P.; Kessler, B.M.; Oppermann, U. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7745-7750.
[http://dx.doi.org/10.1073/pnas.1101262108] [PMID: 21508329]
[53]
Sui, L.; Gandhi, A.; Guo, H.C. Crystal structure of a polypeptide’s C-terminus in complex with the regulatory domain of ER aminopeptidase 1. Mol. Immunol., 2016, 80, 41-49.
[http://dx.doi.org/10.1016/j.molimm.2016.10.012] [PMID: 27825049]
[54]
Mpakali, A.; Giastas, P.; Mathioudakis, N.; Mavridis, I.M.; Saridakis, E.; Stratikos, E. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J. Biol. Chem., 2015, 290(43), 26021-26032.
[http://dx.doi.org/10.1074/jbc.M115.685909] [PMID: 26381406]
[55]
Mpakali, A.; Giastas, P.; Deprez-Poulain, R.; Papakyriakou, A.; Koumantou, D.; Gealageas, R.; Tsoukalidou, S.; Vourloumis, D.; Mavridis, I.M.; Stratikos, E.; Saridakis, E. Crystal structures of ERAP2 complexed with inhibitors reveal pharmacophore requirements for optimizing inhibitor potency. ACS Med. Chem. Lett., 2017, 8(3), 333-337.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00505] [PMID: 28337326]
[56]
Stratikos, E. Regulating adaptive immune responses using small molecule modulators of aminopeptidases that process antigenic peptides. Curr. Opin. Chem. Biol., 2014, 23, 1-7.
[http://dx.doi.org/10.1016/j.cbpa.2014.08.007] [PMID: 25173825]
[57]
Stamogiannos, A.; Maben, Z.; Papakyriakou, A.; Mpakali, A.; Kokkala, P.; Georgiadis, D.; Stern, L.J.; Stratikos, E. Critical ROLE OF INTERDOMAIN INTERACTIONS IN THE CONFORMATIONAL CHANGE AND CATALYTIC MECHANISM OF ENDOPLASMIC RETICULUM AMinopeptidase 1. Biochemistry, 2017, 56(10), 1546-1558.
[http://dx.doi.org/10.1021/acs.biochem.6b01170] [PMID: 28218509]
[58]
Zervoudi, E.; Saridakis, E.; Birtley, J.R.; Seregin, S.S.; Reeves, E.; Kokkala, P.; Aldhamen, Y.A.; Amalfitano, A.; Mavridis, I.M.; James, E.; Georgiadis, D.; Stratikos, E. Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19890-19895.
[http://dx.doi.org/10.1073/pnas.1309781110] [PMID: 24248368]
[59]
Kokkala, P.; Mpakali, A.; Mauvais, F.X.; Papakyriakou, A.; Daskalaki, I.; Petropoulou, I.; Kavvalou, S.; Papathanasopoulou, M.; Agrotis, S.; Fonsou, T.M.; van Endert, P.; Stratikos, E.; Georgiadis, D. optimization and structure-activity relationships of phosphinic pseudotripeptide inhibitors of aminopeptidases that generate antigenic peptides. J. Med. Chem., 2016, 59(19), 9107-9123.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01031] [PMID: 27606717]
[60]
Aldhamen, Y.A.; Pepelyayeva, Y.; Rastall, D.P.; Seregin, S.S.; Zervoudi, E.; Koumantou, D.; Aylsworth, C.F.; Quiroga, D.; Godbehere, S.; Georgiadis, D.; Stratikos, E.; Amalfitano, A. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells. J. Innate Immun., 2015, 7(3), 275-289.
[http://dx.doi.org/10.1159/000368899] [PMID: 25591727]
[61]
Chen, L.; Ridley, A.; Hammitzsch, A.; Al-Mossawi, M.H.; Bunting, H.; Georgiadis, D.; Chan, A.; Kollnberger, S.; Bowness, P. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann. Rheum. Dis., 2016, 75(5), 916-923.
[http://dx.doi.org/10.1136/annrheumdis-2014-206996] [PMID: 26130142]
[62]
Mucha, A.; Drag, M.; Dalton, J.P.; Kafarski, P. Metallo-aminopeptidase inhibitors. Biochimie, 2010, 92(11), 1509-1529.
[http://dx.doi.org/10.1016/j.biochi.2010.04.026] [PMID: 20457213]
[63]
Peng, G.; McEwen, A.G.; Olieric, V.; Schmitt, C.; Albrecht, S.; Cavarelli, J.; Tarnus, C. Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis. Proteins, 2017, 85(8), 1413-1421.
[http://dx.doi.org/10.1002/prot.25301] [PMID: 28383176]
[64]
Deprez-Poulain, R.; Flipo, M.; Piveteau, C.; Leroux, F.; Dassonneville, S.; Florent, I.; Maes, L.; Cos, P.; Deprez, B. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J. Med. Chem., 2012, 55(24), 10909-10917.
[http://dx.doi.org/10.1021/jm301506h] [PMID: 23176597]
[65]
Evnouchidou, I.; Berardi, M.J.; Stratikos, E. A continuous fluorigenic assay for the measurement of the activity of endoplasmic reticulum aminopeptidase 1: competition kinetics as a tool for enzyme specificity investigation. Anal. Biochem., 2009, 395(1), 33-40.
[http://dx.doi.org/10.1016/j.ab.2009.07.032] [PMID: 19638272]
[66]
Chan, W.W. L-leucinthiol - a potent inhibitor of leucine aminopeptidase. Biochem. Biophys. Res. Commun., 1983, 116(1), 297-302.
[http://dx.doi.org/10.1016/0006-291X(83)90414-X] [PMID: 6416254]
[67]
Ocain, T.D.; Rich, D.H. L-lysinethiol: a subnanomolar inhibitor of aminopeptidase B. Biochem. Biophys. Res. Commun., 1987, 145(3), 1038-1042.
[http://dx.doi.org/10.1016/0006-291X(87)91540-3] [PMID: 3111463]
[68]
Węglarz-Tomczak, E.; Vassiliou, S.; Mucha, A. Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues. Bioorg. Med. Chem. Lett., 2016, 26(16), 4122-4126.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.062] [PMID: 27390066]
[69]
Mpakali, A.; Saridakis, E.; Harlos, K.; Zhao, Y.; Kokkala, P.; Georgiadis, D.; Giastas, P.; Papakyriakou, A.; Stratikos, E. Ligand-induced conformational change of Insulin-regulated aminopeptidase: insights on catalytic mechanism and active site plasticity. J. Med. Chem., 2017, 60(7), 2963-2972.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01890] [PMID: 28328206]
[70]
Papakyriakou, A.; Zervoudi, E.; Theodorakis, E.A.; Saveanu, L.; Stratikos, E.; Vourloumis, D. Novel selective inhibitors of aminopeptidases that generate antigenic peptides. Bioorg. Med. Chem. Lett., 2013, 23(17), 4832-4836.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.024] [PMID: 23916253]
[71]
Papakyriakou, A.; Zervoudi, E.; Tsoukalidou, S.; Mauvais, F.X.; Sfyroera, G.; Mastellos, D.C.; van Endert, P.; Theodorakis, E.A.; Vourloumis, D.; Stratikos, E. 3,4-diaminobenzoic acid derivatives as inhibitors of the oxytocinase subfamily of M1 aminopeptidases with immune-regulating properties. J. Med. Chem., 2015, 58(3), 1524-1543.
[http://dx.doi.org/10.1021/jm501867s] [PMID: 25635706]
[72]
Georgiadis, D.; Yiotakis, A. Specific targeting of metzincin family members with small-molecule inhibitors: progress toward a multifarious challenge. Bioorg. Med. Chem., 2008, 16(19), 8781-8794.
[http://dx.doi.org/10.1016/j.bmc.2008.08.058] [PMID: 18790648]
[73]
Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta, 2010, 1803(1), 72-94.
[http://dx.doi.org/10.1016/j.bbamcr.2009.08.006] [PMID: 19712708]
[74]
Stamogiannos, A.; Papakyriakou, A.; Mauvais, F.X.; van Endert, P.; Stratikos, E. Screening identifies thimerosal as a selective inhibitor of endoplasmic reticulum aminopeptidase 1. ACS Med. Chem. Lett., 2016, 7(7), 681-685.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00084] [PMID: 27437077]
[75]
Amyes, T.L.; Richard, J.P. Rational design of transition-state analogues as potent enzyme inhibitors with therapeutic applications. ACS Chem. Biol., 2007, 2(11), 711-714.
[http://dx.doi.org/10.1021/cb700228t] [PMID: 18030986]
[76]
Georgiadis, D.; Dive, V. Phosphinic peptides as potent inhibitors of zinc-metalloproteases. Top. Curr. Chem., 2015, 360, 1-38.
[PMID: 25370521]
[77]
Gupta, S.P. QSAR studies on hydroxamic acids: a fascinating family of chemicals with a wide spectrum of activities. Chem. Rev., 2015, 115(13), 6427-6490.
[http://dx.doi.org/10.1021/cr500483r] [PMID: 26024019]
[78]
Saveanu, L.; Carroll, O.; Weimershaus, M.; Guermonprez, P.; Firat, E.; Lindo, V.; Greer, F.; Davoust, J.; Kratzer, R.; Keller, S.R.; Niedermann, G.; van Endert, P. IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science, 2009, 325(5937), 213-217.
[http://dx.doi.org/10.1126/science.1172845] [PMID: 19498108]
[79]
Segura, E.; Albiston, A.L.; Wicks, I.P.; Chai, S.Y.; Villadangos, J.A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20377-20381.
[http://dx.doi.org/10.1073/pnas.0910295106] [PMID: 19918052]
[80]
Albiston, A.L.; Diwakarla, S.; Fernando, R.N.; Mountford, S.J.; Yeatman, H.R.; Morgan, B.; Pham, V.; Holien, J.K.; Parker, M.W.; Thompson, P.E.; Chai, S.Y. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br. J. Pharmacol., 2011, 164(1), 37-47.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01402.x] [PMID: 21470200]
[81]
Diwakarla, S.; Nylander, E.; Grönbladh, A.; Vanga, S.R.; Khan, Y.S.; Gutiérrez-de-Terán, H.; Sävmarker, J.; Ng, L.; Pham, V.; Lundbäck, T.; Jenmalm-Jensen, A.; Svensson, R.; Artursson, P.; Zelleroth, S.; Engen, K.; Rosenström, U.; Larhed, M.; Åqvist, J.; Chai, S.Y.; Hallberg, M. Aryl sulfonamide inhibitors of insulin-regulated aminopeptidase enhance spine density in primary hippocampal neuron cultures. ACS Chem. Neurosci., 2016, 7(10), 1383-1392.
[http://dx.doi.org/10.1021/acschemneuro.6b00146] [PMID: 27501164]
[82]
Cifaldi, L.; Romania, P.; Falco, M.; Lorenzi, S.; Meazza, R.; Petrini, S.; Andreani, M.; Pende, D.; Locatelli, F.; Fruci, D. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors. Cancer Res., 2015, 75(5), 824-834.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1643] [PMID: 25592150]
[83]
Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr. Med. Chem., 2001, 8(4), 425-474.
[http://dx.doi.org/10.2174/0929867013373417] [PMID: 11172697]
[84]
Nagarajan, N.A.; Gonzalez, F.; Shastri, N. Nonclassical MHC class Ib-restricted cytotoxic T cells monitor antigen processing in the endoplasmic reticulum. Nat. Immunol., 2012, 13(6), 579-586.
[http://dx.doi.org/10.1038/ni.2282] [PMID: 22522492]
[85]
Nagarajan, N.A.; Shastri, N. Immune surveillance for ERAAP dysfunction. Mol. Immunol., 2013, 55(2), 120-122.
[http://dx.doi.org/10.1016/j.molimm.2012.10.006] [PMID: 23433779]
[86]
Wang, B.; Niu, D.; Lai, L.; Ren, E.C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat. Commun., 2013, 4, 2359.
[http://dx.doi.org/10.1038/ncomms3359] [PMID: 23965983]
[87]
Kuo, I.C.; Kao, H.K.; Huang, Y.; Wang, C.I.; Yi, J.S.; Liang, Y.; Liao, C.T.; Yen, T.C.; Wu, C.C.; Chang, K.P. Endoplasmic reticulum aminopeptidase 2 involvement in metastasis of oral cavity squamous cell carcinoma discovered by proteome profiling of primary cancer cells. Oncotarget, 2017, 8(37), 61698-61708.
[http://dx.doi.org/10.18632/oncotarget.18680] [PMID: 28977897]
[88]
Gubin, M.M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J.P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C.D.; Krebber, W.J.; Mulder, G.E.; Toebes, M.; Vesely, M.D.; Lam, S.S.; Korman, A.J.; Allison, J.P.; Freeman, G.J.; Sharpe, A.H.; Pearce, E.L.; Schumacher, T.N.; Aebersold, R.; Rammensee, H.G.; Melief, C.J.; Mardis, E.R.; Gillanders, W.E.; Artyomov, M.N.; Schreiber, R.D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515(7528), 577-581.
[http://dx.doi.org/10.1038/nature13988] [PMID: 25428507]
[89]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[90]
Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; Utikal, J.; Hassel, J.C.; Weide, B.; Kaehler, K.C.; Loquai, C.; Mohr, P.; Gutzmer, R.; Dummer, R.; Gabriel, S.; Wu, C.J.; Schadendorf, D.; Garraway, L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, 350(6257), 207-211.
[http://dx.doi.org/10.1126/science.aad0095] [PMID: 26359337]
[91]
Guasp, P.; Alvarez-Navarro, C.; Gomez-Molina, P.; Martín-Esteban, A.; Marcilla, M.; Barnea, E.; Admon, A.; López de Castro, J.A. The Peptidome of Behçet’s Disease-Associated HLA-B*51:01 Includes Two Subpeptidomes Differentially Shaped by Endoplasmic Reticulum Aminopeptidase 1. Arthritis Rheumatol., 2016, 68(2), 505-515.
[http://dx.doi.org/10.1002/art.39430] [PMID: 26360328]
[92]
Alvarez-Navarro, C.; Martín-Esteban, A.; Barnea, E.; Admon, A.; López de Castro, J.A. ERAP1 polymorphism relevant to inflammatory disease shapes the peptidome of the birdshot chorioretinopathy-associated HLA-A*29:02 antigen. Mol. Cell. Proteomics, 2015, 14(7), 1770-1780.
[http://dx.doi.org/10.1074/mcp.M115.048959] [PMID: 25892735]
[93]
Tran, E.; Ahmadzadeh, M.; Lu, Y.C.; Gros, A.; Turcotte, S.; Robbins, P.F.; Gartner, J.J.; Zheng, Z.; Li, Y.F.; Ray, S.
Wunderlich, J.R.; Somerville, R.P.; Rosenberg, S.A. Immu-nogenicity of somatic mutations in human gastrointestinal cancers. Science, 2015, 350(6266), 1387-1390.
[http://dx.doi.org/10.1126/science.aad1253] [PMID: 26516200]
[94]
Cortes, A.; Pulit, S.L.; Leo, P.J.; Pointon, J.J.; Robinson, P.C.; Weisman, M.H.; Ward, M.; Gensler, L.S.; Zhou, X.; Garchon, H.J.; Chiocchia, G.; Nossent, J.; Lie, B.A.; Førre, Ø.; Tuomilehto, J.; Laiho, K.; Bradbury, L.A.; Elewaut, D.; Burgos-Vargas, R.; Stebbings, S.; Appleton, L.; Farrah, C.; Lau, J.; Haroon, N.; Mulero, J.; Blanco, F.J.; Gonzalez-Gay, M.A.; Lopez-Larrea, C.; Bowness, P.; Gaffney, K.; Gaston, H.; Gladman, D.D.; Rahman, P.; Maksymowych, W.P.; Crusius, J.B.; van der Horst-Bruinsma, I.E.; Valle-Oñate, R.; Romero-Sánchez, C.; Hansen, I.M.; Pimentel-Santos, F.M.; Inman, R.D.; Martin, J.; Breban, M.; Wordsworth, B.P.; Reveille, J.D.; Evans, D.M.; de Bakker, P.I.; Brown, M.A. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun., 2015, 6, 7146.
[http://dx.doi.org/10.1038/ncomms8146] [PMID: 25994336]
[95]
Kirino, Y.; Bertsias, G.; Ishigatsubo, Y.; Mizuki, N.; Tugal-Tutkun, I.; Seyahi, E.; Ozyazgan, Y.; Sacli, F.S.; Erer, B.; Inoko, H.; Emrence, Z.; Cakar, A.; Abaci, N.; Ustek, D.; Satorius, C.; Ueda, A.; Takeno, M.; Kim, Y.; Wood, G.M.; Ombrello, M.J.; Meguro, A.; Gül, A.; Remmers, E.F.; Kastner, D.L. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat. Genet., 2013, 45(2), 202-207.
[http://dx.doi.org/10.1038/ng.2520] [PMID: 23291587]
[96]
Martín-Esteban, A.; Sanz-Bravo, A.; Guasp, P.; Barnea, E.; Admon, A.; López de Castro, J.A. Separate effects of the ankylosing spondylitis associated ERAP1 and ERAP2 aminopeptidases determine the influence of their combined phenotype on the HLA-B*27 peptidome. J. Autoimmun., 2017, 79, 28-38.
[http://dx.doi.org/10.1016/j.jaut.2016.12.008] [PMID: 28063628]
[97]
Guasp, P.; Barnea, E.; González-Escribano, M.F.; Jiménez-Reinoso, A.; Regueiro, J.R.; Admon, A.; López de Castro, J.A. The Behçet’s disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. J. Biol. Chem., 2017, 292(23), 9680-9689.
[http://dx.doi.org/10.1074/jbc.M117.789180] [PMID: 28446606]
[98]
Rastall, D.P.W.; Alyaquob, F.S.; O’Connell, P.; Pepelyayeva, Y.; Peters, D.; Godbehere-Roosa, S.; Pereira-Hicks, C.; Aldhamen, Y.A.; Amalfitano, A. Mice expressing human ERAP1 variants associated with ankylosing spondylitis have altered T-cell repertoires and NK cell functions, as well as increased in utero and perinatal mortality. Int. Immunol., 2017, 29(6), 277-289.
[http://dx.doi.org/10.1093/intimm/dxx035] [PMID: 28814066]
[99]
Cagliani, R.; Riva, S.; Biasin, M.; Fumagalli, M.; Pozzoli, U.; Lo Caputo, S.; Mazzotta, F.; Piacentini, L.; Bresolin, N.; Clerici, M.; Sironi, M. Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection. Hum. Mol. Genet., 2010, 19(23), 4705-4714.
[http://dx.doi.org/10.1093/hmg/ddq401] [PMID: 20843824]
[100]
Tenzer, S.; Wee, E.; Burgevin, A.; Stewart-Jones, G.; Friis, L.; Lamberth, K.; Chang, C.H.; Harndahl, M.; Weimershaus, M.; Gerstoft, J.; Akkad, N.; Klenerman, P.; Fugger, L.; Jones, E.Y.; McMichael, A.J.; Buus, S.; Schild, H.; van Endert, P.; Iversen, A.K. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat. Immunol., 2009, 10(6), 636-646.
[http://dx.doi.org/10.1038/ni.1728] [PMID: 19412183]
[101]
Cui, X.; Rouhani, F.N.; Hawari, F.; Levine, S.J. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J. Biol. Chem., 2003, 278(31), 28677-28685.
[http://dx.doi.org/10.1074/jbc.M300456200] [PMID: 12748171]
[102]
Goto, Y.; Ogawa, K.; Hattori, A.; Tsujimoto, M. Secretion of endoplasmic reticulum aminopeptidase 1 is involved in the activation of macrophages induced by lipopolysaccharide and interferon-gamma. J. Biol. Chem., 2011, 286(24), 21906-21914.
[http://dx.doi.org/10.1074/jbc.M111.239111] [PMID: 21531727]
[103]
Aldhamen, Y.A.; Seregin, S.S.; Rastall, D.P.; Aylsworth, C.F.; Pepelyayeva, Y.; Busuito, C.J.; Godbehere-Roosa, S.; Kim, S.; Amalfitano, A. Endoplasmic reticulum aminopeptidase-1 functions regulate key aspects of the innate immune response. PLoS One, 2013, 8(7)e69539
[http://dx.doi.org/10.1371/journal.pone.0069539] [PMID: 23894499]
[104]
Hattori, A.; Kitatani, K.; Matsumoto, H.; Miyazawa, S.; Rogi, T.; Tsuruoka, N.; Mizutani, S.; Natori, Y.; Tsujimoto, M. Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. J. Biochem., 2000, 128(5), 755-762.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022812] [PMID: 11056387]
[105]
Hisatsune, C.; Ebisui, E.; Usui, M.; Ogawa, N.; Suzuki, A.; Mataga, N.; Takahashi-Iwanaga, H.; Mikoshiba, K. ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol. Cell, 2015, 58(6), 1015-1027.
[http://dx.doi.org/10.1016/j.molcel.2015.04.008] [PMID: 25959394]
[106]
Miyashita, H.; Yamazaki, T.; Akada, T.; Niizeki, O.; Ogawa, M.; Nishikawa, S.; Sato, Y. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood, 2002, 99(9), 3241-3249.
[http://dx.doi.org/10.1182/blood.V99.9.3241] [PMID: 11964289]
[107]
Yamazaki, T.; Akada, T.; Niizeki, O.; Suzuki, T.; Miyashita, H.; Sato, Y. Puromycin-insensitive leucyl-specific aminopeptidase (PILSAP) binds and catalyzes PDK1, allowing VEGF-stimulated activation of S6K for endothelial cell proliferation and angiogenesis. Blood, 2004, 104(8), 2345-2352.
[http://dx.doi.org/10.1182/blood-2003-12-4260] [PMID: 15187024]
[108]
Akada, T.; Yamazaki, T.; Miyashita, H.; Niizeki, O.; Abe, M.; Sato, A.; Satomi, S.; Sato, Y. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is involved in the activation of endothelial integrins. J. Cell. Physiol., 2002, 193(2), 253-262.
[http://dx.doi.org/10.1002/jcp.10169] [PMID: 12385003]
[109]
Papakyriakou, A.; Stratikos, E. The Role of conformational dynamics in antigen trimming by intracellular aminopeptidases. Front. Immunol., 2017, 8(946), 946.
[http://dx.doi.org/10.3389/fimmu.2017.00946] [PMID: 28824657]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy