Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Kisspeptin and its Effect on Mammalian Spermatogensis

Author(s): Tao Feng, Jia H. Bai, Xiao L. Xu and Yan Liu*

Volume 20, Issue 1, 2019

Page: [9 - 14] Pages: 6

DOI: 10.2174/1389200219666180129112406

Price: $65

Abstract

Background: Kisspeptin and its receptor, GPR54, are regarded as key regulators of and catalysts for male puberty onset, and also fundamental gatekeepers of spermatogenesis in mammals. Consequently, the loss function of kisspeptin or GPR54 leads to a symptom of Hypogonadotropic Hypogonadism (HH) in human and HH accompanied by lower gonadotrophic hormone levels, smaller testes, impaired spermatogenesis and abnormal sexual maturation in mice. Besides its well-recognized functions in hypothalamus before and during puberty, accumulating data strongly support kisspeptin production in testis, and participation in somatic and germ cell development and sperm functions as well. This review aims to summarize recent findings regarding kisspeptin activity in the testes and sperm function.

Methods: We undertook a keyword search of peer-reviewed research literature including data from in vivo and in vitro studies in humans and genetically modified animal models to identify the roles of kisspeptins in male reproduction.

Results: A plethora of studies detail the role of kisspeptins and GPR54 in mammalian spermatogenesis in vivo and in vitro. This review identified recent findings regarding the kisspeptin system in male gonads, and regulation of kisspeptin in testicular physiology and male reproductive defects and disorders.

Conclusion: The findings of this review confirm the importance role of kisspeptins in male fertility. Understanding their biphasic roles in testis may help to consider kisspeptins as potential pharmacological targets for treating human infertility.

Keywords: Kisspeptin, GPR54, testis, sperm, gonadotrophins, testosterone, mammal.

Graphical Abstract

[1]
Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int. Rev. Cytol., 2002, 218, 69-141.
[2]
Meccariello, R.; Fasano, S.; Pierantoni, R.; Cobellis, G. Modulators of hypothalamic-pituitary-gonadal axis for the control of spermatogenesis and sperm quality in vertebrates. Front. Endocrinol. (Lausanne), 2014, 5, 135.
[3]
Chianese, R.; Cobellis, G.; Chioccarelli, T.; Ciaramella, V.; Migliaccio, M.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptins, estrogens and male fertility. Curr. Med. Chem., 2016, 23(36), 4070-4091.
[4]
Roser, J.F. Endocrine and paracrine control of sperm production in stallions. Anim. Reprod. Sci., 2001, 68(3-4), 139-151.
[5]
Huleihel, M.; Lunenfeld, E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J. Androl., 2004, 6(3), 259-268.
[6]
Muir, A.I.; Chamberlain, L.; Elshourbagy, N.A.; Michalovich, D.; Moore, D.J.; Calamari, A.; Szekeres, P.G.; Sarau, H.M.; Chambers, J.K.; Murdock, P.; Steplewski, K.; Shabon, U.; Miller, J.E.; Middleton, S.E.; Darker, J.G.; Larminie, C.G.; Wilson, S.; Bergsma, D.J.; Emson, P.; Faull, R.; Philpott, K.L.; Harrison, D.C. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem., 2001, 276(31), 28969-28975.
[7]
Irwig, M.S.; Fraley, G.S.; Smith, J.T.; Acohido, B.V.; Popa, S.M.; Cunningham, M.J.; Gottsch, M.L.; Clifton, D.K.; Steiner, R.A. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology, 2004, 80(4), 264-272.
[8]
Feng, T.; Zhao, Y.Z.; Chu, M.X.; Zhang, Y.J.; Fang, L.; Di, R.; Cao, G.L.; Li, N. Association between sexual precocity and alleles of KISS-1 and GPR54 genes in goats. Anim. Biotechnol., 2009, 20(3), 172-176.
[9]
Lee, J.H.; Miele, M.E.; Hicks, D.J.; Phillips, K.K.; Trent, J.M.; Weissman, B.E.; Welch, D.R. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst., 1996, 88(23), 1731-1737.
[10]
Lee, J.H.; Welch, D.R. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int. J. Cancer, 1997, 71(6), 1035-1044.
[11]
Lee, J.H.; Welch, D.R. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res., 1997, 57(12), 2384-2387.
[12]
Lee, D.K.; Nguyen, T.; O’Neill, G.P.; Cheng, R.; Liu, Y.; Howard, A.D.; Coulombe, N.; Tan, C.P.; Tang-Nguyen, A.T.; George, S.R.; O’Dowd, B.F. Discovery of a receptor related to the galanin receptors. FEBS Lett., 1999, 446(1), 103-107.
[13]
de Roux, N.; Genin, E.; Carel, J-C.; Matsuda, F.; Chaussain, J-L.; Milgrom, E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10972-10976.
[14]
Seminara, S.B.; Messager, S.; Chatzidaki, E.E.; Thresher, R.R.; Acierno, J.S., Jr; Shagoury, J.K.; Bo-Abbas, Y.; Kuohung, W.; Schwinof, K.M.; Hendrick, A.G.; Zahn, D.; Dixon, J.; Kaiser, U.B.; Slaugenhaupt, S.A.; Gusella, J.F.; O’Rahilly, S.; Carlton, M.B.; Crowley, W.F., Jr; Aparicio, S.A.; Colledge, W.H. The GPR54 gene as a regulator of puberty. N. Engl. J. Med., 2003, 349(17), 1614-1627.
[15]
Gottsch, M.L.; Cunningham, M.J.; Smith, J.T.; Popa, S.M.; Acohido, B.V.; Crowley, W.F.; Seminara, S.; Clifton, D.K.; Steiner, R.A. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 2004, 145(9), 4073-4077.
[16]
Seminara, S.B. We all remember our first kiss: Kisspeptin and the male gonadal axis. J. Clin. Endocrinol. Metab., 2005, 90(12), 6738-6740.
[17]
Ohtaki, T.; Shintani, Y.; Honda, S.; Matsumoto, H.; Hori, A.; Kanehashi, K.; Terao, Y.; Kumano, S.; Takatsu, Y.; Masuda, Y.; Ishibashi, Y.; Watanabe, T.; Asada, M.; Yamada, T.; Suenaga, M.; Kitada, C.; Usuki, S.; Kurokawa, T.; Onda, H.; Nishimura, O.; Fujino, M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837), 613-617.
[18]
Kotani, M.; Detheux, M.; Vandenbogaerde, A.; Communi, D.; Vanderwinden, J.M.; Le Poul, E.; Brézillon, S.; Tyldesley, R.; Suarez-Huerta, N.; Vandeput, F.; Blanpain, C.; Schiffmann, S.N.; Vassart, G.; Parmentier, M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem., 2001, 276(37), 34631-34636.
[19]
Colledge, W.H. GPR54 and kisspeptins. Results Probl. Cell Differ., 2008, 46, 117-143.
[20]
Yun, S.; Kim, D.K.; Furlong, M.; Hwang, J.I.; Vaudry, H.; Seong, J.Y. Does Kisspeptin Belong to the Proposed RF-Amide Peptide Family? Front. Endocrinol. (Lausanne), 2014, 5, 134.
[21]
Lee, Y.R.; Tsunekawa, K.; Moon, M.J.; Um, H.N.; Hwang, J.I.; Osugi, T.; Otaki, N.; Sunakawa, Y.; Kim, K.; Vaudry, H.; Kwon, H.B.; Seong, J.Y.; Tsutsui, K. Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology, 2009, 150(6), 2837-2846.
[22]
Osugi, T.; Ohtaki, N.; Sunakawa, Y.; Son, Y.L.; Ohkubo, M.; Iigo, M.; Amano, M.; Tsutsui, K. Molecular evolution of kiss2 genes and peptides in vertebrates. Endocrinology, 2013, 154(11), 4270-4280.
[23]
Moriya, S.; Tahsin, N.; Parhar, I.S. Bpifcl modulates kiss2 expression under the influence of 11-ketotestosterone in female zebrafish. Sci. Rep., 2017, 7(1), 7926.
[24]
Wang, B.; Liu, Q.; Liu, X.; Xu, Y.; Shi, B. Molecular characterization of Kiss2 receptor and in vitro effects of Kiss2 on reproduction-related gene expression in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis). Gen. Comp. Endocrinol., 2017, 249, 55-63.
[25]
Pinto, F.M.; Cejudo-Román, A.; Ravina, C.G.; Fernández-Sánchez, M.; Martín-Lozano, D.; Illanes, M.; Tena-Sempere, M.; Candenas, M.L. Characterization of the kisspeptin system in human spermatozoa. Int. J. Androl., 2012, 35(1), 63-73.
[26]
Hsu, M.C.; Wang, J.Y.; Lee, Y.J.; Jong, D.S.; Tsui, K.H.; Chiu, C.H. Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction, 2014, 147(6), 835-845.
[27]
Salehi, S.; Adeshina, I.; Chen, H.; Zirkin, B.R.; Hussain, M.A.; Wondisford, F.; Wolfe, A.; Radovick, S. Developmental and endocrine regulation of kisspeptin expression in mouse Leydig cells. Endocrinology, 2015, 156(4), 1514-1522.
[28]
Irfan, S.; Ehmcke, J.; Shahab, M.; Wistuba, J.; Schlatt, S. Immunocytochemical localization of kisspeptin and kisspeptin receptor in the primate testis. J. Med. Primatol., 2016, 45(3), 105-111.
[29]
George, J.T.; Veldhuis, J.D.; Roseweir, A.K.; Newton, C.L.; Faccenda, E.; Millar, R.P.; Anderson, R.A. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J. Clin. Endocrinol. Metab., 2011, 96(8), E1228-E1236.
[30]
Jayasena, C.N.; Abbara, A.; Narayanaswamy, S.; Comninos, A.N.; Ratnasabapathy, R.; Bassett, P.; Mogford, J.T.; Malik, Z.; Calley, J.; Ghatei, M.A.; Bloom, S.R.; Dhillo, W.S. Direct comparison of the effects of intravenous kisspeptin-10, kisspeptin-54 and GnRH on gonadotrophin secretion in healthy men. Hum. Reprod., 2015, 30(8), 1934-1941.
[31]
Shahab, M.; Mastronardi, C.; Seminara, S.B.; Crowley, W.F.; Ojeda, S.R.; Plant, T.M. Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates. Proc. Natl. Acad. Sci. USA, 2005, 102(6), 2129-2134.
[32]
Irfan, S.; Ehmcke, J.; Wahab, F.; Shahab, M.; Schlatt, S. Intratesticular action of kisspeptin in rhesus monkey (Macaca mulatta). Andrologia, 2014, 46(6), 610-617.
[33]
Ezzat Ahmed, A.; Saito, H.; Sawada, T.; Yaegashi, T.; Yamashita, T.; Hirata, T.; Sawai, K.; Hashizume, T. Characteristics of the stimulatory effect of kisspeptin-10 on the secretion of luteinizing hormone, follicle-stimulating hormone and growth hormone in prepubertal male and female cattle. J. Reprod. Dev., 2009, 55(6), 650-654.
[34]
Qureshi, I.Z.; Abbas, Q. Modulation of testicular and whole blood trace element concentrations in conjunction with testosterone release following kisspeptin administration in male rabbits (Oryctolagus cuniculus). Biol. Trace Elem. Res., 2013, 154(2), 210-216.
[35]
Ramzan, F.; Qureshi, I.Z. Intraperitoneal kisspeptin-10 administration induces dose-dependent degenerative changes in maturing rat testes. Life Sci., 2011, 88(5-6), 246-256.
[36]
Thompson, E.L.; Patterson, M.; Murphy, K.G.; Smith, K.L.; Dhillo, W.S.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J. Neuroendocrinol., 2004, 16(10), 850-858.
[37]
Tovar, S.; Vázquez, M.J.; Navarro, V.M.; Fernández-Fernández, R.; Castellano, J.M.; Vigo, E.; Roa, J.; Casanueva, F.F.; Aguilar, E.; Pinilla, L.; Dieguez, C.; Tena-Sempere, M. Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology, 2006, 147(6), 2696-2704.
[38]
Patterson, M.; Murphy, K.G.; Thompson, E.L.; Patel, S.; Ghatei, M.A.; Bloom, S.R. Administration of kisspeptin-54 into discrete regions of the hypothalamus potently increases plasma luteinising hormone and testosterone in male adult rats. J. Neuroendocrinol., 2006, 18(5), 349-354.
[39]
Thompson, E.L.; Murphy, K.G.; Patterson, M.; Bewick, G.A.; Stamp, G.W.; Curtis, A.E.; Cooke, J.H.; Jethwa, P.H.; Todd, J.F.; Ghatei, M.A.; Bloom, S.R. Chronic subcutaneous administration of kisspeptin-54 causes testicular degeneration in adult male rats. Am. J. Physiol. Endocrinol. Metab., 2006, 291(5), E1074-E1082.
[40]
Ansel, L.; Bentsen, A.H.; Ancel, C.; Bolborea, M.; Klosen, P.; Mikkelsen, J.D.; Simonneaux, V. Peripheral kisspeptin reverses short photoperiod-induced gonadal regression in Syrian hamsters by promoting GNRH release. Reproduction, 2011, 142(3), 417-425.
[41]
Seminara, S.B.; Dipietro, M.J.; Ramaswamy, S.; Crowley, W.F., Jr; Plant, T.M. Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): A finding with therapeutic implications. Endocrinology, 2006, 147(5), 2122-2126.
[42]
Ramaswamy, S.; Seminara, S.B.; Pohl, C.R.; DiPietro, M.J.; Crowley, W.F., Jr; Plant, T.M. Effect of continuous intravenous administration of human metastin 45-54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology, 2007, 148(7), 3364-3370.
[43]
Matsui, H.; Tanaka, A.; Yokoyama, K.; Takatsu, Y.; Ishikawa, K.; Asami, T.; Nishizawa, N.; Suzuki, A.; Kumano, S.; Terada, M.; Kusaka, M.; Kitada, C.; Ohtaki, T. Chronic administration of the metastin/kisspeptin analog KISS1-305 or the investigational agent TAK-448 suppresses hypothalamic pituitary gonadal function and depletes plasma testosterone in adult male rats. Endocrinology, 2012, 153(11), 5297-5308.
[44]
Mahmoudi, F.; Khazali, H.; Janahmadi, M. Morphine attenuates testosterone response to central injection of kisspeptin in male rats. Int. J. Fertil. Steril., 2014, 8(2), 215-220.
[45]
Wang, J.Y.; Hsu, M.C.; Tseng, T.H.; Wu, L.S.; Yang, K.T.; Chiu, C.H. Kisspeptin expression in mouse Leydig cells correlates with age. J. Chin. Med. Assoc., 2015, 78(4), 249-257.
[46]
Tariq, A.R.; Shabab, M. Effect of kisspeptin challenge on testosterone and inhibin secretion from in vitro testicular tissue of adult male rhesus monkey (Macaca mulatta). Andrologia, 2017, 49(1)
[47]
Anjum, S.; Krishna, A.; Sridaran, R.; Tsutsui, K. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice J Exp Zool A Ecol Genet Physiol, 2012, 317 (10), 630-644.
[48]
Tariq, A.R.; Shahab, M.; Clarke, I.J.; Pereira, A.; Smith, J.T.; Khan, S.; Sultan, J.; Javed, S.; Anwar, T. Kiss1 and Kiss1 receptor expression in the rhesus monkey testis: A possible local regulator of testicular function. Cent. Eur. J. Biol., 2013, 8, 968-974.
[49]
Ramzan, M.H.; Ramzan, M.; Ramzan, F.; Wahab, F.; Jelani, M.; Khan, M.A.; Shah, M. Insight into the serum kisspeptin levels in infertile males. Arch. Iran Med., 2015, 18(1), 12-17.
[50]
d’Anglemont de Tassigny, X.; Fagg, L.A.; Dixon, J.P.; Day, K.; Leitch, H.G.; Hendrick, A.G.; Zahn, D.; Franceschini, I.; Caraty, A.; Carlton, M.B.; Aparicio, S.A.; Colledge, W.H. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl. Acad. Sci. USA, 2007, 104(25), 10714-10719.
[51]
Lapatto, R.; Pallais, J.C.; Zhang, D.; Chan, Y.M.; Mahan, A.; Cerrato, F.; Le, W.W.; Hoffman, G.E.; Seminara, S.B. Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology, 2007, 148(10), 4927-4936.
[52]
Chan, Y.M.; Broder-Fingert, S.; Wong, K.M.; Seminara, S.B. Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice. J. Neuroendocrinol., 2009, 21(12), 1015-1023.
[53]
Mei, H.; Walters, C.; Carter, R.; Colledge, W.H. Gpr54-/- mice show more pronounced defects in spermatogenesis than Kiss1-/- mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction, 2011, 141(3), 357-366.
[54]
Prentice, L.M.; d’Anglemont de Tassigny, X.; McKinney, S.; Ruiz de Algara, T.; Yap, D.; Turashvili, G.; Poon, S.; Sutcliffe, M.; Allard, P.; Burleigh, A.; Fee, J.; Huntsman, D.G.; Colledge, W.H.; Aparicio, S.A. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent. BMC Genomics, 2011, 12, 209.
[55]
Uenoyama, Y.; Nakamura, S.; Hayakawa, Y.; Ikegami, K.; Watanabe, Y.; Deura, C.; Minabe, S.; Tomikawa, J.; Goto, T.; Ieda, N.; Inoue, N.; Sanbo, M.; Tamura, C.; Hirabayashi, M.; Maeda, K.I.; Tsukamura, H. Lack of pulse and surge modes and glutamatergic stimulation of luteinising hormone release in Kiss1 knockout rats. J. Neuroendocrinol., 2015, 27(3), 187-197.
[56]
Mazaheri, A.; Hashemipour, M.; Salehi, M.; Behnam, M.; Hovsepian, S.; Hassanzadeh, A. Mutation of kisspeptin 1 gene in children with precocious puberty in isfahan city. Int. J. Prev. Med., 2015, 6, 41.
[57]
Silveira, L.G.; Noel, S.D.; Silveira-Neto, A.P.; Abreu, A.P.; Brito, V.N.; Santos, M.G.; Bianco, S.D.; Kuohung, W.; Xu, S.; Gryngarten, M.; Escobar, M.E.; Arnhold, I.J.; Mendonca, B.B.; Kaiser, U.B.; Latronico, A.C. Mutations of the KISS1 gene in disorders of puberty. J. Clin. Endocrinol. Metab., 2010, 95(5), 2276-2280.
[58]
Maalhagh, M.; Jahromi, A.S.; Yusefi, A.; Razeghi, A.; Zabetiyan, H.; Karami, M.Y.; Madani, A.H. Effects of prepubertal acute immobilization stress on serum kisspeptin level and testis histology in rats. Pak. J. Biol. Sci., 2016, 19(1), 43-48.
[59]
Hirano, T.; Kobayashi, Y.; Omotehara, T.; Tatsumi, A.; Hashimoto, R.; Umemura, Y.; Nagahara, D.; Mantani, Y.; Yokoyama, T.; Kitagawa, H.; Hoshi, N. Unpredictable chronic stress-induced reproductive suppression associated with the decrease of kisspeptin immunoreactivity in male mice. J. Vet. Med. Sci., 2014, 76(9), 1201-1208.
[60]
Grachev, P.; Li, X.F.; O’Byrne, K. Stress regulation of kisspeptin in the modulation of reproductive function. Adv. Exp. Med. Biol., 2013, 784, 431-454.
[61]
Gulevich, R.G.; Shikhevich, S.G.; Konoshenko, M.Y.; Kozhemyakina, R.V.; Herbeck, Y.E.; Prasolova, L.A.; Oskina, I.N.; Plyusnina, I.Z. The influence of social environment in early life on the behavior, stress response, and reproductive system of adult male Norway rats selected for different attitudes to humans. Physiol. Behav., 2015, 144, 116-123.
[62]
Thompson, E.L.; Amber, V.; Stamp, G.W.; Patterson, M.; Curtis, A.E.; Cooke, J.H.; Appleby, G.F.; Dhillo, W.S.; Ghatei, M.A.; Bloom, S.R.; Murphy, K.G. Kisspeptin-54 at high doses acutely induces testicular degeneration in adult male rats via central mechanisms. Br. J. Pharmacol., 2009, 156(4), 609-625.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy