Abstract
The paradoxical role of ER stress in malignant diseases is only just being unraveled and remains incompletely understood. A particular challenge is the complex interplay between spaciotemporal and locoregional microenvironmental constraints in solid tumors and stress responses upon treatment; thus, the potential for new combinatorial therapeutic options to foster the coincidence of ER stress-related deadly events is likely to be underestimated. Without claiming this review to be complete, we present a comprehensive overview of the signaling mechanisms associated with the unfolded protein response (UPR) and the molecular link to cell survival and death mechanisms. We (i) delineate the mechanistic scenario and outcome of the UPR; (ii) discuss the role of ER stress in cancer development and progression; (iii) highlight the impact of various environmental conditions and stress stimuli, such as nutrient limitation and tumor hypoxia, in this context; and (iv) attempt to shed some light on the putative link between DNA damage, irradiation, and ER stress to emphasize the potential of therapeutic targeting of ER stress pathways for combined cancer treatments.
Keywords: Endoplasmic reticulum stress, unfolded protein response, cancer cell, tumorigenesis, microenvironment, therapy.