Review Article

2型糖尿病中microRNA的微调

卷 26, 期 22, 2019

页: [4102 - 4118] 页: 17

弟呕挨: 10.2174/0929867325666171205163944

价格: $65

摘要

2型糖尿病是一种代谢疾病,广泛分布于工业化国家/地区。久坐的生活方式和不健康的饮食习惯会导致肥胖,增加血液中的葡萄糖和脂肪酸,并最终导致胰岛素抵抗,胰腺炎症和胰岛素产生或分泌不良,所有这些都是2型糖尿病的明确标志。 miRNA是非编码RNA的小序列,可以调节细胞内的多个过程,以意想不到的微妙精度调节蛋白质表达,时间范围从数分钟到数天不等。自从发现miRNA及其可能在病理学中的意义以来,几个小组旨在寻找2型糖尿病和miRNA之间的关系。在这里,我们讨论了培养细胞,动物模型和糖尿病患者中不同miRNA表达的模式。我们总结了在2型糖尿病的背景下,最重要的miRNA在胰腺生长和发育,胰岛素分泌以及肝脏,骨骼肌或脂肪细胞胰岛素抵抗中的作用。

关键词: miRNA,2型糖尿病,胰岛素抵抗,胰腺发育,胰岛素分泌,生物标志物,基因指导疗法。

[1]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[2]
Morrish, N.J.; Wang, S.L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia, 2001, 44(Suppl. 2), S14-S21.
[http://dx.doi.org/10.1007/PL00002934] [PMID: 11587045]
[3]
Stratmann, B.; Tschoepe, D. Atherogenesis and atherothrombosis--focus on diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab., 2009, 23(3), 291-303.
[http://dx.doi.org/10.1016/j.beem.2008.12.004] [PMID: 19520304]
[4]
Rosado, J.A.; Saavedra, F.R.; Redondo, P.C.; Hernández-Cruz, J.M.; Salido, G.M.; Pariente, J.A. Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica, 2004, 89(9), 1142-1144.
[PMID: 15377479]
[5]
Natarajan, A.; Zaman, A.G.; Marshall, S.M. Platelet hyperactivity in type 2 diabetes: role of antiplatelet agents. Diab. Vasc. Dis. Res., 2008, 5(2), 138-144.
[http://dx.doi.org/10.3132/dvdr.2008.023] [PMID: 18537103]
[6]
El Haouari, M.; Rosado, J.A. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol. Dis., 2008, 41(1), 119-123.
[http://dx.doi.org/10.1016/j.bcmd.2008.02.010] [PMID: 18387322]
[7]
Gregory, S.G.; Barlow, K.F.; McLay, K.E.; Kaul, R.; Swarbreck, D.; Dunham, A.; Scott, C.E.; Howe, K.L.; Woodfine, K.; Spencer, C.C.; Jones, M.C.; Gillson, C.; Searle, S.; Zhou, Y.; Kokocinski, F.; McDonald, L.; Evans, R.; Phillips, K.; Atkinson, A.; Cooper, R.; Jones, C.; Hall, R.E.; Andrews, T.D.; Lloyd, C.; Ainscough, R.; Almeida, J.P.; Ambrose, K.D.; Anderson, F.; Andrew, R.W.; Ashwell, R.I.; Aubin, K.; Babbage, A.K.; Bagguley, C.L.; Bailey, J.; Beasley, H.; Bethel, G.; Bird, C.P.; Bray-Allen, S.; Brown, J.Y.; Brown, A.J.; Buckley, D.; Burton, J.; Bye, J.; Carder, C.; Chapman, J.C.; Clark, S.Y.; Clarke, G.; Clee, C.; Cobley, V.; Collier, R.E.; Corby, N.; Coville, G.J.; Davies, J.; Deadman, R.; Dunn, M.; Earthrowl, M.; Ellington, A.G.; Errington, H.; Frankish, A.; Frankland, J.; French, L.; Garner, P.; Garnett, J.; Gay, L.; Ghori, M.R.; Gibson, R.; Gilby, L.M.; Gillett, W.; Glithero, R.J.; Grafham, D.V.; Griffiths, C.; Griffiths-Jones, S.; Grocock, R.; Hammond, S.; Harrison, E.S.; Hart, E.; Haugen, E.; Heath, P.D.; Holmes, S.; Holt, K.; Howden, P.J.; Hunt, A.R.; Hunt, S.E.; Hunter, G.; Isherwood, J.; James, R.; Johnson, C.; Johnson, D.; Joy, A.; Kay, M.; Kershaw, J.K.; Kibukawa, M.; Kimberley, A.M.; King, A.; Knights, A.J.; Lad, H.; Laird, G.; Lawlor, S.; Leongamornlert, D.A.; Lloyd, D.M.; Loveland, J.; Lovell, J.; Lush, M.J.; Lyne, R.; Martin, S.; Mashreghi-Mohammadi, M.; Matthews, L.; Matthews, N.S.; McLaren, S.; Milne, S.; Mistry, S.; Moore, M.J.; Nickerson, T.; O’Dell, C.N.; Oliver, K.; Palmeiri, A.; Palmer, S.A.; Parker, A.; Patel, D.; Pearce, A.V.; Peck, A.I.; Pelan, S.; Phelps, K.; Phillimore, B.J.; Plumb, R.; Rajan, J.; Raymond, C.; Rouse, G.; Saenphimmachak, C.; Sehra, H.K.; Sheridan, E.; Shownkeen, R.; Sims, S.; Skuce, C.D.; Smith, M.; Steward, C.; Subramanian, S.; Sycamore, N.; Tracey, A.; Tromans, A.; Van Helmond, Z.; Wall, M.; Wallis, J.M.; White, S.; Whitehead, S.L.; Wilkinson, J.E.; Willey, D.L.; Williams, H.; Wilming, L.; Wray, P.W.; Wu, Z.; Coulson, A.; Vaudin, M.; Sulston, J.E.; Durbin, R.; Hubbard, T.; Wooster, R.; Dunham, I.; Carter, N.P.; McVean, G.; Ross, M.T.; Harrow, J.; Olson, M.V.; Beck, S.; Rogers, J.; Bentley, D.R.; Banerjee, R.; Bryant, S.P.; Burford, D.C.; Burrill, W.D.; Clegg, S.M.; Dhami, P.; Dovey, O.; Faulkner, L.M.; Gribble, S.M.; Langford, C.F.; Pandian, R.D.; Porter, K.M.; Prigmore, E. The DNA sequence and biological annotation of human chromosome 1. Nature, 2006, 441(7091), 315-321.
[http://dx.doi.org/10.1038/nature04727] [PMID: 16710414]
[8]
Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543), 853-858.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[9]
Gong, Q.; Xie, J.; Liu, Y.; Li, Y.; Su, G. Differentially expressed MicroRNAs in the development of early diabetic retinopathy. J. Diabetes Res., 2017.20174727942
[http://dx.doi.org/10.1155/2017/4727942] [PMID: 28706953]
[10]
Deng, X.; Liu, Y.; Luo, M.; Wu, J.; Ma, R.; Wan, Q.; Wu, J. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget, 2017, 8(38), 63038-63046.
[http://dx.doi.org/10.18632/oncotarget.18593] [PMID: 28968969]
[11]
Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol., 2017, 11(12), 1673-1686.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[12]
Szabo, L.; Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Genet., 2016, 17(11), 679-692.
[http://dx.doi.org/10.1038/nrg.2016.114] [PMID: 27739534]
[13]
Ambros, V. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev., 2000, 10(4), 428-433.
[http://dx.doi.org/10.1016/S0959-437X(00)00108-8] [PMID: 10889059]
[14]
Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; Spring, J.; Srinivasan, A.; Fishman, M.; Finnerty, J.; Corbo, J.; Levine, M.; Leahy, P.; Davidson, E.; Ruvkun, G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808), 86-89.
[http://dx.doi.org/10.1038/35040556] [PMID: 11081512]
[15]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[16]
Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543), 858-862.
[http://dx.doi.org/10.1126/science.1065062] [PMID: 11679671]
[17]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[18]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[19]
Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[20]
Gregory, R.I.; Yan, K.P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[21]
Kim, Y.K.; Kim, B.; Kim, V.N. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2016, 113(13), E1881-E1889.
[http://dx.doi.org/10.1073/pnas.1602532113] [PMID: 26976605]
[22]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(5654), 95-98.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[23]
Hutvágner, G.; McLachlan, J.; Pasquinelli, A.E.; Bálint, E.; Tuschl, T.; Zamore, P.D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531), 834-838.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[24]
Knight, S.W.; Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science, 2001, 293(5538), 2269-2271.
[http://dx.doi.org/10.1126/science.1062039] [PMID: 11486053]
[25]
Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res., 2004, 14(10A), 1902-1910.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901]
[26]
Wei, R.; Yang, J.; Liu, G.Q.; Gao, M.J.; Hou, W.F.; Zhang, L.; Gao, H.W.; Liu, Y.; Chen, G.A.; Hong, T.P. Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene, 2013, 518(2), 246-255.
[http://dx.doi.org/10.1016/j.gene.2013.01.038] [PMID: 23370336]
[27]
Moss, E.G. MicroRNAs: hidden in the genome. Curr. Biol., 2002, 12(4), R138-R140.
[http://dx.doi.org/10.1016/S0960-9822(02)00708-X] [PMID: 11864587]
[28]
Krützfeldt, J.; Stoffel, M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab., 2006, 4(1), 9-12.
[http://dx.doi.org/10.1016/j.cmet.2006.05.009] [PMID: 16814728]
[29]
Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol., 2003, 13(9), 790-795.
[http://dx.doi.org/10.1016/S0960-9822(03)00250-1] [PMID: 12725740]
[30]
Teleman, A.A.; Maitra, S.; Cohen, S.M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev., 2006, 20(4), 417-422.
[http://dx.doi.org/10.1101/gad.374406] [PMID: 16481470]
[31]
Poy, M.N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X.; Macdonald, P.E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P.; Stoffel, M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432(7014), 226-230.
[http://dx.doi.org/10.1038/nature03076] [PMID: 15538371]
[32]
Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem., 2006, 281(37), 26932-26942.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[33]
Boutz, P.L.; Chawla, G.; Stoilov, P.; Black, D.L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev., 2007, 21(1), 71-84.
[http://dx.doi.org/10.1101/gad.1500707] [PMID: 17210790]
[34]
Chen, J.F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet., 2006, 38(2), 228-233.
[http://dx.doi.org/10.1038/ng1725] [PMID: 16380711]
[35]
Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; Dean, N.M.; Freier, S.M.; Bennett, C.F.; Lollo, B.; Griffey, R. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem., 2004, 279(50), 52361-52365.
[http://dx.doi.org/10.1074/jbc.C400438200] [PMID: 15504739]
[36]
Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2014, 307(9), E729-E737.
[http://dx.doi.org/10.1152/ajpendo.00194.2014] [PMID: 25184990]
[37]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[38]
Davalos, A.; Goedeke, L.; Smibert, P.; Ramirez, C.M.; Warrier, N.P.; Andreo, U.; Cirera-Salinas, D.; Rayner, K.; Suresh, U.; Pastor-Pareja, J.C.; Esplugues, E.; Fisher, E.A.; Penalva, L.O.; Moore, K.J.; Suarez, Y.; Lai, E. Cy.; Fernandez-Hernando, C., miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signayling. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9232-9237.
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456]
[39]
Rayner, K.J.; Suarez, Y.; Davalos, A.; Parathath, S.; Fitzgerald, M.L.; Tamehiro, N.; Fisher, E.A. Moore,y K.J.; Fernandez- Hernando, C., MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 2010, 3y28(5985), 1570-1573.
[40]
Najafi-Shoushtari, S.H.; Kristo, F.; Li, Y.; Shioda, T.; Cohen, D.E.; Gerszten, R.E.; Näär, A.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science, 2010, 328(5985), 1566-1569.
[http://dx.doi.org/10.1126/science.1189123] [PMID: 20466882]
[41]
Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185.
[http://dx.doi.org/10.1161/ATVBAHA.112.300144] [PMID: 23325474]
[42]
Marquart, T.J.; Allen, R.M.; Ory, D.S.; Baldán, A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12228-12232.
[http://dx.doi.org/10.1073/pnas.1005191107] [PMID: 20566875]
[43]
Sun, L.; Xie, H.; Mori, M.A.; Alexander, R.; Yuan, B.; Hattangadi, S.M.; Liu, Q.; Kahn, C.R.; Lodish, H.F. Mir193b-365 is essential for brown fat differentiation. Nat. Cell Biol., 2011, 13(8), 958-965.
[http://dx.doi.org/10.1038/ncb2286] [PMID: 21743466]
[44]
Chen, Y.; Siegel, F.; Kipschull, S.; Haas, B.; Fröhlich, H.; Meister, G.; Pfeifer, A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun., 2013, 4, 1769.
[http://dx.doi.org/10.1038/ncomms2742] [PMID: 23612310]
[45]
Trajkovski, M.; Ahmed, K.; Esau, C.C.; Stoffel, M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol., 2012, 14(12), 1330-1335.
[http://dx.doi.org/10.1038/ncb2612] [PMID: 23143398]
[46]
Seale, P.; Kajimura, S.; Yang, W.; Chin, S.; Rohas, L.M.; Uldry, M.; Tavernier, G.; Langin, D.; Spiegelman, B.M. Transcriptional control of brown fat determination by PRDM16. Cell Metab., 2007, 6(1), 38-54.
[http://dx.doi.org/10.1016/j.cmet.2007.06.001] [PMID: 17618855]
[47]
Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[48]
Karbiener, M.; Pisani, D.F.; Frontini, A.; Oberreiter, L.M.; Lang, E.; Vegiopoulos, A.; Mössenböck, K.; Bernhardt, G.A.; Mayr, T.; Hildner, F.; Grillari, J.; Ailhaud, G.; Herzig, S.; Cinti, S.; Amri, E.Z.; Scheideler, M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells, 2014, 32(6), 1578-1590.
[http://dx.doi.org/10.1002/stem.1603] [PMID: 24375761]
[49]
Kim, Y.J.; Hwang, S.H.; Cho, H.H.; Shin, K.K.; Bae, Y.C.; Jung, J.S. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J. Cell. Physiol., 2012, 227(1), 183-193.
[http://dx.doi.org/10.1002/jcp.22716] [PMID: 21381024]
[50]
Kim, Y.J.; Hwang, S.H.; Lee, S.Y.; Shin, K.K.; Cho, H.H.; Bae, Y.C.; Jung, J.S. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev., 2012, 21(10), 1749-1760.
[http://dx.doi.org/10.1089/scd.2011.0429] [PMID: 21988232]
[51]
Mori, M.A.; Raghavan, P.; Thomou, T.; Boucher, J.; Robida-Stubbs, S.; Macotela, Y.; Russell, S.J.; Kirkland, J.L.; Blackwell, T.K.; Kahn, C.R. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab., 2012, 16(3), 336-347.
[http://dx.doi.org/10.1016/j.cmet.2012.07.017] [PMID: 22958919]
[52]
Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat. Rev. Endocrinol., 2015, 11(5), 276-288.
[http://dx.doi.org/10.1038/nrendo.2015.25] [PMID: 25732520]
[53]
Wang, C.; Wan, S.; Yang, T.; Niu, D.; Zhang, A.; Yang, C.; Cai, J.; Wu, J.; Song, J.; Zhang, C.Y.; Zhang, C.; Wang, J. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci. Rep., 2016, 6, 20032.
[http://dx.doi.org/10.1038/srep20032] [PMID: 26831044]
[54]
van Rossum, D.; Verheijen, B.M.; Pasterkamp, R.J. Circular RNAs: Novel regulators of neuronal development. Front. Mol. Neurosci., 2016, 9, 74.
[http://dx.doi.org/10.3389/fnmol.2016.00074] [PMID: 27616979]
[55]
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[56]
Tattikota, S.G.; Rathjen, T.; Hausser, J.; Khedkar, A.; Kabra, U.D.; Pandey, V.; Sury, M.; Wessels, H.H.; Mollet, I.G.; Eliasson, L.; Selbach, M.; Zinzen, R.P.; Zavolan, M.; Kadener, S.; Tschöp, M.H.; Jastroch, M.; Friedländer, M.R.; Poy, M.N. miR-184 regulates pancreatic β-cell function according to glucose metabolism. J. Biol. Chem., 2015, 290(33), 20284-20294.
[http://dx.doi.org/10.1074/jbc.M115.658625] [PMID: 26152724]
[57]
Lee, D.E.; Brown, J.L.; Rosa, M.E.; Brown, L.A.; Perry, R.A., Jr; Wiggs, M.P.; Nilsson, M.I.; Crouse, S.F.; Fluckey, J.D.; Washington, T.A.; Greene, N.P. microRNA-16 is downregulated during insulin resistance and controls skeletal muscle protein accretion. J. Cell. Biochem., 2016, 117(8), 1775-1787.
[http://dx.doi.org/10.1002/jcb.25476] [PMID: 26683117]
[58]
Yan, S.T.; Li, C.L.; Tian, H.; Li, J.; Pei, Y.; Liu, Y.; Gong, Y.P.; Fang, F.S.; Sun, B.R. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol. Cell. Biochem., 2014, 397(1-2), 45-51.
[http://dx.doi.org/10.1007/s11010-014-2170-8] [PMID: 25084986]
[59]
Tattikota, S.G.; Sury, M.D.; Rathjen, T.; Wessels, H.H.; Pandey, A.K.; You, X.; Becker, C.; Chen, W.; Selbach, M.; Poy, M.N. Argonaute2 regulates the pancreatic β-cell secretome. Mol. Cell. Proteomics, 2013, 12(5), 1214-1225.
[http://dx.doi.org/10.1074/mcp.M112.024786] [PMID: 23358505]
[60]
Jordan, S.D.; Krüger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Brönneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Böttger, T.; Braun, T.; Seibler, J.; Brüning, J.C. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat. Cell Biol., 2011, 13(4), 434-446.
[http://dx.doi.org/10.1038/ncb2211] [PMID: 21441927]
[61]
Perelis, M.; Marcheva, B.; Ramsey, K.M.; Schipma, M.J.; Hutchison, A.L.; Taguchi, A.; Peek, C.B.; Hong, H.; Huang, W.; Omura, C.; Allred, A.L.; Bradfield, C.A.; Dinner, A.R.; Barish, G.D.; Bass, J. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 2015, 350(6261)aac4250
[http://dx.doi.org/10.1126/science.aac4250] [PMID: 26542580]
[62]
Lovis, P.; Roggli, E.; Laybutt, D.R.; Gattesco, S.; Yang, J.Y.; Widmann, C.; Abderrahmani, A.; Regazzi, R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes, 2008, 57(10), 2728-2736.
[http://dx.doi.org/10.2337/db07-1252] [PMID: 18633110]
[63]
Zhou, J.; Meng, Y.; Tian, S.; Chen, J.; Liu, M.; Zhuo, M.; Zhang, Y.; Du, H.; Wang, X. Comparative microRNA expression profiles of cynomolgus monkeys, rat, and human reveal that mir-182 is involved in T2D pathogenic processes. J. Diabetes Res., 2014, 2014760397
[http://dx.doi.org/10.1155/2014/760397] [PMID: 25530976]
[64]
Bouwens, L.; Rooman, I. Regulation of pancreatic beta-cell mass. Physiol. Rev., 2005, 85(4), 1255-1270.
[http://dx.doi.org/10.1152/physrev.00025.2004] [PMID: 16183912]
[65]
Klein, D.; Misawa, R.; Bravo-Egana, V.; Vargas, N.; Rosero, S.; Piroso, J.; Ichii, H.; Umland, O.; Zhijie, J.; Tsinoremas, N.; Ricordi, C.; Inverardi, L.; Domínguez-Bendala, J.; Pastori, R.L. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One, 2013, 8(1)e55064
[http://dx.doi.org/10.1371/journal.pone.0055064] [PMID: 23383059]
[66]
McEvoy, R.C. Changes in the volumes of the A-, B-, and D-cell populations in the pancreatic islets during the postnatal development of the rat. Diabetes, 1981, 30(10), 813-817.
[http://dx.doi.org/10.2337/diab.30.10.813] [PMID: 6115783]
[67]
McEvoy, R.C.; Madson, K.L. Pancreatic insulikn-, glucagon-, and somatostatin-positive islet cell populatins during the perinatal development of the rat. I. Morphometric quantitation. Biol. Neonate, 1980, 38(5-6), 248-254.
[http://dx.doi.org/10.1159/000241372] [PMID: 6106511]
[68]
Wang, R.N.; Bouwens, L.; Klöppel, G. Beta-cell growth in adolescent and adult rats treated with streptozotocin during the neonatal period. Diabetologia, 1996, 39(5), 548-557.
[http://dx.doi.org/10.1007/BF00403301] [PMID: 8739914]
[69]
Lynn, F.C.; Skewes-Cox, P.; Kosaka, Y.; McManus, M.T.; Harfe, B.D.; German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 2007, 56(12), 2938-2945.
[http://dx.doi.org/10.2337/db07-0175] [PMID: 17804764]
[70]
Kalis, M.; Bolmeson, C.; Esguerra, J.L.; Gupta, S.; Edlund, A.; Tormo-Badia, N.; Speidel, D.; Holmberg, D.; Mayans, S.; Khoo, N.K.; Wendt, A.; Eliasson, L.; Cilio, C.M. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One, 2011, 6(12)e29166
[http://dx.doi.org/10.1371/journal.pone.0029166] [PMID: 22216196]
[71]
Mandelbaum, A.D.; Melkman-Zehavi, T.; Oren, R.; Kredo-Russo, S.; Nir, T.; Dor, Y.; Hornstein, E. Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp. Diabetes Res., 2012, 2012470302
[http://dx.doi.org/10.1155/2012/470302] [PMID: 22991506]
[72]
Gradwohl, G.; Dierich, A.; LeMeur, M.; Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1607-1611.
[http://dx.doi.org/10.1073/pnas.97.4.1607] [PMID: 10677506]
[73]
Lee, J.C.; Smith, S.B.; Watada, H.; Lin, J.; Scheel, D.; Wang, J.; Mirmira, R.G.; German, M.S. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes, 2001, 50(5), 928-936.
[http://dx.doi.org/10.2337/diabetes.50.5.928] [PMID: 11334435]
[74]
Kawasaki, H.; Taira, K. Retraction: Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature, 2003, 426(6962), 100.
[http://dx.doi.org/10.1038/nature02141] [PMID: 14603326]
[75]
Kawasaki, H.; Taira, K. Nature, 2003, 423(6942), 838-842.
[http://dx.doi.org/10.1038/nature01730] [PMID: 12808467]
[76]
Larsen, L.; Rosenstierne, M.W.; Gaarn, L.W.; Bagge, A.; Pedersen, L.; Dahmcke, C.M.; Nielsen, J.H.; Dalgaard, L.T. Expression and localization of microRNAs in perinatal rat pancreas: role of miR-21 in regulation of cholesterol metabolism. PLoS One, 2011, 6(10)e25997
[http://dx.doi.org/10.1371/journal.pone.0025997] [PMID: 22022489]
[77]
Joglekar, M.V.; Parekh, V.S.; Mehta, S.; Bhonde, R.R.; Hardikar, A.A. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev. Biol., 2007, 311(2), 603-612.
[http://dx.doi.org/10.1016/j.ydbio.2007.09.008] [PMID: 17936263]
[78]
Correa-Medina, M.; Bravo-Egana, V.; Rosero, S.; Ricordi, C.; Edlund, H.; Diez, J.; Pastori, R.L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns, 2009, 9(4), 193-199.
[http://dx.doi.org/10.1016/j.gep.2008.12.003] [PMID: 19135553]
[79]
Joglekar, M.V.; Joglekar, V.M.; Hardikar, A.A. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr. Patterns, 2009, 9(2), 109-113.
[http://dx.doi.org/10.1016/j.gep.2008.10.001] [PMID: 18977315]
[80]
Wang, Y.; Liu, J.; Liu, C.; Naji, A.; Stoffers, D.A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes, 2013, 62(3), 887-895.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022]
[81]
Baroukh, N.; Ravier, M.A.; Loder, M.K.; Hill, E.V.; Bounacer, A.; Scharfmann, R.; Rutter, G.A.; Van Obberghen, E. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J. Biol. Chem., 2007, 282(27), 19575-19588.
[http://dx.doi.org/10.1074/jbc.M611841200] [PMID: 17462994]
[82]
Sebastiani, G.; Po, A.; Miele, E.; Ventriglia, G.; Ceccarelli, E.; Bugliani, M.; Marselli, L.; Marchetti, P.; Gulino, A.; Ferretti, E.; Dotta, F. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetol., 2015, 52(3), 523-530.
[http://dx.doi.org/10.1007/s00592-014-0675-y] [PMID: 25408296]
[83]
Kloosterman, W.P.; Lagendijk, A.K.; Ketting, R.F.; Moulton, J.D.; Plasterk, R.H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol., 2007, 5(8)e203
[http://dx.doi.org/10.1371/journal.pbio.0050203] [PMID: 17676975]
[84]
Joglekar, M.V.; Parekh, V.S.; Hardikar, A.A. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol. Metab., 2007, 18(10), 393-400.
[http://dx.doi.org/10.1016/j.tem.2007.10.001] [PMID: 18023200]
[85]
Poy, M.N.; Hausser, J.; Trajkovski, M.; Braun, M.; Collins, S.; Rorsman, P.; Zavolan, M.; Stoffel, M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5813-5818.
[http://dx.doi.org/10.1073/pnas.0810550106] [PMID: 19289822]
[86]
Latreille, M.; Herrmanns, K.; Renwick, N.; Tuschl, T.; Malecki, M.T.; McCarthy, M.I.; Owen, K.R.; Rülicke, T.; Stoffel, M. miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J. Mol. Med. (Berl.), 2015, 93(10), 1159-1169.
[http://dx.doi.org/10.1007/s00109-015-1296-9] [PMID: 26013143]
[87]
Jafarian, A.; Taghikani, M.; Abroun, S.; Allahverdi, A.; Lamei, M.; Lakpour, N.; Soleimani, M. The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS One, 2015, 10(6)e0128650
[http://dx.doi.org/10.1371/journal.pone.0128650] [PMID: 26047014]
[88]
Latreille, M.; Hausser, J.; Stützer, I.; Zhang, Q.; Hastoy, B.; Gargani, S.; Kerr-Conte, J.; Pattou, F.; Zavolan, M.; Esguerra, J.L.; Eliasson, L.; Rülicke, T.; Rorsman, P.; Stoffel, M. MicroRNA-7a regulates pancreatic β cell function. J. Clin. Invest., 2014, 124(6), 2722-2735.
[http://dx.doi.org/10.1172/JCI73066] [PMID: 24789908]
[89]
Drucker, D.J. The biology of incretin hormones. Cell Metab., 2006, 3(3), 153-165.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[90]
Xu, H.; Guo, S.; Li, W.; Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep., 2015, 5, 12453.
[http://dx.doi.org/10.1038/srep12453] [PMID: 26211738]
[91]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[92]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[93]
Ramachandran, D.; Roy, U.; Garg, S.; Ghosh, S.; Pathak, S.; Kolthur-Seetharam, U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J., 2011, 278(7), 1167-1174.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08042.x] [PMID: 21288303]
[94]
Esguerra, J.L.; Bolmeson, C.; Cilio, C.M.; Eliasson, L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One, 2011, 6(4)e18613
[http://dx.doi.org/10.1371/journal.pone.0018613] [PMID: 21490936]
[95]
Li, Y.; Xu, X.; Liang, Y.; Liu, S.; Xiao, H.; Li, F.; Cheng, H.; Fu, Z. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol., 2010, 3(3), 254-264.
[PMID: 20224724]
[96]
Li, X. MiR-375, a microRNA related to diabetes. Gene, 2014, 533(1), 1-4.
[http://dx.doi.org/10.1016/j.gene.2013.09.105] [PMID: 24120394]
[97]
Dumortier, O.; Hinault, C.; Gautier, N.; Patouraux, S.; Casamento, V.; Van Obberghen, E. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes, 2014, 63(10), 3416-3427.
[http://dx.doi.org/10.2337/db13-1431] [PMID: 24834976]
[98]
El Ouaamari, A.; Baroukh, N.; Martens, G.A.; Lebrun, P.; Pipeleers, D.; van Obberghen, E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 2008, 57(10), 2708-2717.
[http://dx.doi.org/10.2337/db07-1614] [PMID: 18591395]
[99]
Bernal-Mizrachi, E.; Kulkarni, R.N.; Scott, D.K.; Mauvais-Jarvis, F.; Stewart, A.F.; Garcia-Ocaña, A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes, 2014, 63(3), 819-831.
[http://dx.doi.org/10.2337/db13-1146] [PMID: 24556859]
[100]
Kulkarni, R.N.; Mizrachi, E.B.; Ocana, A.G.; Stewart, A.F. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes, 2012, 61(9), 2205-2213.
[http://dx.doi.org/10.2337/db12-0018] [PMID: 22751699]
[101]
Stewart, A.F.; Hussain, M.A.; García-Ocaña, A.; Vasavada, R.C.; Bhushan, A.; Bernal-Mizrachi, E.; Kulkarni, R.N. Human β-cell proliferation and intracellular signaling: part 3. Diabetes, 2015, 64(6), 1872-1885.
[http://dx.doi.org/10.2337/db14-1843] [PMID: 25999530]
[102]
Rafiq, I.; da Silva Xavier, G.; Hooper, S.; Rutter, G.A. Glucose-stimulated preproinsulin gene expression and nuclear trans-location of pancreatic duodenum homeobox-1 require activation of phosphatidylinositol 3-kinase but not p38 MAPK/SAPK2. J. Biol. Chem., 2000, 275(21), 15977-15984.
[http://dx.doi.org/10.1074/jbc.275.21.15977] [PMID: 10821851]
[103]
Keller, D.M.; McWeeney, S.; Arsenlis, A.; Drouin, J.; Wright, C.V.; Wang, H.; Wollheim, C.B.; White, P.; Kaestner, K.H.; Goodman, R.H. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J. Biol. Chem., 2007, 282(44), 32084-32092.
[http://dx.doi.org/10.1074/jbc.M700899200] [PMID: 17761679]
[104]
Macfarlane, W.M.; Campbell, S.C.; Elrick, L.J.; Oates, V.; Bermano, G.; Lindley, K.J.; Aynsley-Green, A.; Dunne, M.J.; James, R.F.; Docherty, K. Glucose regulates islet amyloid polypeptide gene transcription in a PDX1- and calcium-dependent manner. J. Biol. Chem., 2000, 275(20), 15330-15335.
[http://dx.doi.org/10.1074/jbc.M908045199] [PMID: 10748090]
[105]
Macfarlane, W.M.; McKinnon, C.M.; Felton-Edkins, Z.A.; Cragg, H.; James, R.F.; Docherty, K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J. Biol. Chem., 1999, 274(2), 1011-1016.
[http://dx.doi.org/10.1074/jbc.274.2.1011] [PMID: 9873045]
[106]
Jhala, U.S.; Canettieri, G.; Screaton, R.A.; Kulkarni, R.N.; Krajewski, S.; Reed, J.; Walker, J.; Lin, X.; White, M.; Montminy, M. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev., 2003, 17(13), 1575-1580.
[http://dx.doi.org/10.1101/gad.1097103] [PMID: 12842910]
[107]
Keller, D.M.; Clark, E.A.; Goodman, R.H. Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol. Endocrinol., 2012, 26(6), 989-999.
[http://dx.doi.org/10.1210/me.2011-1205] [PMID: 22539037]
[108]
Tattikota, S.G.; Rathjen, T.; McAnulty, S.J.; Wessels, H.H.; Akerman, I.; van de Bunt, M.; Hausser, J.; Esguerra, J.L.; Musahl, A.; Pandey, A.K.; You, X.; Chen, W.; Herrera, P.L.; Johnson, P.R.; O’Carroll, D.; Eliasson, L.; Zavolan, M.; Gloyn, A.L.; Ferrer, J.; Shalom-Feuerstein, R.; Aberdam, D.; Poy, M.N. Argonaute2 mediates compensatory expansion of the pancreatic β cell. Cell Metab., 2014, 19(1), 122-134.
[http://dx.doi.org/10.1016/j.cmet.2013.11.015] [PMID: 24361012]
[109]
Salunkhe, V.A.; Esguerra, J.L.; Ofori, J.K.; Mollet, I.G.; Braun, M.; Stoffel, M.; Wendt, A.; Eliasson, L. Modulation of microRNA-375 expression alters voltage-gated Na(+) channel properties and exocytosis in insulin-secreting cells. Acta Physiol. (Oxf.), 2015, 213(4), 882-892.
[http://dx.doi.org/10.1111/apha.12460] [PMID: 25627423]
[110]
Bonizzato, A.; Gaffo, E.; Te Kronnie, G.; Bortoluzzi, S. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J., 2016, 6(10)e483
[http://dx.doi.org/10.1038/bcj.2016.81] [PMID: 27740630]
[111]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[112]
Kato, T.; Shimano, H.; Yamamoto, T.; Yokoo, T.; Endo, Y.; Ishikawa, M.; Matsuzaka, T.; Nakagawa, Y.; Kumadaki, S.; Yahagi, N.; Takahashi, A.; Sone, H.; Suzuki, H.; Toyoshima, H.; Hasty, A.H.; Takahashi, S.; Gomi, H.; Izumi, T.; Yamada, N. Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metab., 2006, 4(2), 143-154.
[http://dx.doi.org/10.1016/j.cmet.2006.06.009] [PMID: 16890542]
[113]
Brunham, L.R.; Kruit, J.K.; Pape, T.D.; Timmins, J.M.; Reuwer, A.Q.; Vasanji, Z.; Marsh, B.J.; Rodrigues, B.; Johnson, J.D.; Parks, J.S.; Verchere, C.B.; Hayden, M.R. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med., 2007, 13(3), 340-347.
[http://dx.doi.org/10.1038/nm1546] [PMID: 17322896]
[114]
Wijesekara, N.; Kaur, A.; Westwell-Roper, C.; Nackiewicz, D.; Soukhatcheva, G.; Hayden, M.R.; Verchere, C.B. ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia, 2016, 59(6), 1242-1246.
[http://dx.doi.org/10.1007/s00125-016-3907-6] [PMID: 26970755]
[115]
Wijesekara, N.; Zhang, L.H.; Kang, M.H.; Abraham, T.; Bhattacharjee, A.; Warnock, G.L.; Verchere, C.B.; Hayden, M.R. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes, 2012, 61(3), 653-658.
[http://dx.doi.org/10.2337/db11-0944] [PMID: 22315319]
[116]
Lovis, P.; Gattesco, S.; Regazzi, R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem., 2008, 389(3), 305-312.
[http://dx.doi.org/10.1515/BC.2008.026] [PMID: 18177263]
[117]
Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Wills, Q.F.; Kaisaki, P.J.; Barrett, A.; Camps, C.; Fernandez, C.; Ragoussis, J.; Gauguier, D.; McCarthy, M.I.; Lindgren, C.M. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med. Genomics, 2009, 2, 54.
[http://dx.doi.org/10.1186/1755-8794-2-54] [PMID: 19689793]
[118]
Roggli, E.; Britan, A.; Gattesco, S.; Lin-Marq, N.; Abderrahmani, A.; Meda, P.; Regazzi, R. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 2010, 59(4), 978-986.
[http://dx.doi.org/10.2337/db09-0881] [PMID: 20086228]
[119]
Tang, X.; Muniappan, L.; Tang, G.; Ozcan, S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA, 2009, 15(2), 287-293.
[http://dx.doi.org/10.1261/rna.1211209] [PMID: 19096044]
[120]
Zhou, X.; Jeker, L.T.; Fife, B.T.; Zhu, S.; Anderson, M.S.; McManus, M.T.; Bluestone, J.A. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med., 2008, 205(9), 1983-1991.
[http://dx.doi.org/10.1084/jem.20080707] [PMID: 18725525]
[121]
Hezova, R.; Slaby, O.; Faltejskova, P.; Mikulkova, Z.; Buresova, I.; Raja, K.R.; Hodek, J.; Ovesna, J.; Michalek, J. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell. Immunol., 2010, 260(2), 70-74.
[http://dx.doi.org/10.1016/j.cellimm.2009.10.012] [PMID: 19954774]
[122]
Smyth, S.; Heron, A. Diabetes and obesity: the twin epidemics. Nat. Med., 2006, 12(1), 75-80.
[http://dx.doi.org/10.1038/nm0106-75] [PMID: 16397575]
[123]
Perry, R.J.; Samuel, V.T.; Petersen, K.F.; Shulman, G.I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature, 2014, 510(7503), 84-91.
[http://dx.doi.org/10.1038/nature13478] [PMID: 24899308]
[124]
Guay, C.; Roggli, E.; Nesca, V.; Jacovetti, C.; Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res., 2011, 157(4), 253-264.
[http://dx.doi.org/10.1016/j.trsl.2011.01.009] [PMID: 21420036]
[125]
Zhou, B.; Li, C.; Qi, W.; Zhang, Y.; Zhang, F.; Wu, J.X.; Hu, Y.N.; Wu, D.M.; Liu, Y.; Yan, T.T.; Jing, Q.; Liu, M.F.; Zhai, Q.W. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012, 55(7), 2032-2043.
[http://dx.doi.org/10.1007/s00125-012-2539-8] [PMID: 22476949]
[126]
Sekine, S.; Ogawa, R.; Mcmanus, M.T.; Kanai, Y.; Hebrok, M. Dicer is required for proper liver zonation. J. Pathol., 2009, 219(3), 365-372.
[http://dx.doi.org/10.1002/path.2606] [PMID: 19718708]
[127]
Yang, Y.M.; Seo, S.Y.; Kim, T.H.; Kim, S.G. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology, 2012, 56(6), 2209-2220.
[http://dx.doi.org/10.1002/hep.25912] [PMID: 22807119]
[128]
Kaur, K.; Vig, S.; Srivastava, R.; Mishra, A.; Singh, V.P.; Srivastava, A.K.; Datta, M. Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes, 2015, 64(11), 3659-3669.
[http://dx.doi.org/10.2337/db14-1924] [PMID: 26193896]
[129]
DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S157-S163.
[http://dx.doi.org/10.2337/dc09-S302] [PMID: 19875544]
[130]
Granjon, A.; Gustin, M.P.; Rieusset, J.; Lefai, E.; Meugnier, E.; Güller, I.; Cerutti, C.; Paultre, C.; Disse, E.; Rabasa-Lhoret, R.; Laville, M.; Vidal, H.; Rome, S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes, 2009, 58(11), 2555-2564.
[http://dx.doi.org/10.2337/db09-0165] [PMID: 19720801]
[131]
Ducluzeau, P.H.; Perretti, N.; Laville, M.; Andreelli, F.; Vega, N.; Riou, J.P.; Vidal, H. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes, 2001, 50(5), 1134-1142.
[http://dx.doi.org/10.2337/diabetes.50.5.1134] [PMID: 11334418]
[132]
Nielsen, S.; Scheele, C.; Yfanti, C.; Akerström, T.; Nielsen, A.R.; Pedersen, B.K.; Laye, M.J. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol., 2010, 588(Pt 20), 4029-4037.
[http://dx.doi.org/10.1113/jphysiol.2010.189860] [PMID: 20724368]
[133]
Gallagher, I.J.; Scheele, C.; Keller, P.; Nielsen, A.R.; Remenyi, J.; Fischer, C.P.; Roder, K.; Babraj, J.; Wahlestedt, C.; Hutvagner, G.; Pedersen, B.K.; Timmons, J.A. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med., 2010, 2(2), 9.
[http://dx.doi.org/10.1186/gm130] [PMID: 20353613]
[134]
Keller, P.; Vollaard, N.B.; Gustafsson, T.; Gallagher, I.J.; Sundberg, C.J.; Rankinen, T.; Britton, S.L.; Bouchard, C.; Koch, L.G.; Timmons, J.A. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol (1985), 2011, 110(1), 46-59.
[135]
Jiang, L.Q.; Franck, N.; Egan, B.; Sjögren, R.J.; Katayama, M.; Duque-Guimaraes, D.; Arner, P.; Zierath, J.R.; Krook, A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am. J. Physiol. Endocrinol. Metab., 2013, 305(11), E1359-E1366.
[http://dx.doi.org/10.1152/ajpendo.00236.2013] [PMID: 24105413]
[136]
Zhang, Y.; Yang, L.; Gao, Y.F.; Fan, Z.M.; Cai, X.Y.; Liu, M.Y.; Guo, X.R.; Gao, C.L.; Xia, Z.K. MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2. Mol. Cell. Endocrinol., 2013, 381(1-2), 230-240.
[http://dx.doi.org/10.1016/j.mce.2013.08.004] [PMID: 23954742]
[137]
Latouche, C.; Natoli, A.; Reddy-Luthmoodoo, M.; Heywood, S.E.; Armitage, J.A.; Kingwell, B.A. MicroRNA-194 modulates glucose metabolism and its skeletal muscle expression is reduced in diabetes. PLoS One, 2016, 11(5)e0155108
[http://dx.doi.org/10.1371/journal.pone.0155108] [PMID: 27163678]
[138]
He, A.; Zhu, L.; Gupta, N.; Chang, Y.; Fang, F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol., 2007, 21(11), 2785-2794.
[http://dx.doi.org/10.1210/me.2007-0167] [PMID: 17652184]
[139]
Kurtz, C.L.; Peck, B.C.; Fannin, E.E.; Beysen, C.; Miao, J.; Landstreet, S.R.; Ding, S.; Turaga, V.; Lund, P.K.; Turner, S.; Biddinger, S.B.; Vickers, K.C.; Sethupathy, P. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes, 2014, 63(9), 3141-3148.
[http://dx.doi.org/10.2337/db13-1015] [PMID: 24722248]
[140]
Deiuliis, J.A. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes., 2016, 40(1), 88-101.
[http://dx.doi.org/10.1038/ijo.2015.170] [PMID: 26311337]
[141]
Thum, T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol. Med., 2012, 4(1), 3-14.
[http://dx.doi.org/10.1002/emmm.201100191] [PMID: 22162462]
[142]
Al-Kafaji, G.; Al-Mahroos, G.; Alsayed, N.A.; Hasan, Z.A.; Nawaz, S.; Bakhiet, M. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol. Med. Rep., 2015, 12(5), 7485-7490.
[http://dx.doi.org/10.3892/mmr.2015.4416] [PMID: 26460159]
[143]
Herrera, B.M.; Lockstone, H.E.; Taylor, J.M.; Ria, M.; Barrett, A.; Collins, S.; Kaisaki, P.; Argoud, K.; Fernandez, C.; Travers, M.E.; Grew, J.P.; Randall, J.C.; Gloyn, A.L.; Gauguier, D.; McCarthy, M.I.; Lindgren, C.M. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010, 53(6), 1099-1109.
[http://dx.doi.org/10.1007/s00125-010-1667-2] [PMID: 20198361]
[144]
Bravo-Egana, V.; Rosero, S.; Molano, R.D.; Pileggi, A.; Ricordi, C.; Domínguez-Bendala, J.; Pastori, R.L. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem. Biophys. Res. Commun., 2008, 366(4), 922-926.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.052] [PMID: 18086561]
[145]
Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; Zhao, J.; Zhao, L. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol., 2011, 48(1), 61-69.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[146]
Gerin, I.; Clerbaux, L.A.; Haumont, O.; Lanthier, N.; Das, A.K.; Burant, C.F.; Leclercq, I.A.; MacDougald, O.A.; Bommer, G.T. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem., 2010, 285(44), 33652-33661.
[http://dx.doi.org/10.1074/jbc.M110.152090] [PMID: 20732877]
[147]
Nesca, V.; Guay, C.; Jacovetti, C.; Menoud, V.; Peyot, M.L.; Laybutt, D.R.; Prentki, M.; Regazzi, R. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia, 2013, 56(10), 2203-2212.
[http://dx.doi.org/10.1007/s00125-013-2993-y] [PMID: 23842730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy