Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Targeting Cytokines for Morphine Tolerance: A Narrative Review

Author(s): Dai-Qiang Liu, Ya-Qun Zhou and Feng Gao*

Volume 17, Issue 4, 2019

Page: [366 - 376] Pages: 11

DOI: 10.2174/1570159X15666171128144441

Price: $65

Abstract

Background: Despite its various side effects, morphine has been widely used in clinics for decades due to its powerful analgesic effect. Morphine tolerance is one of the major side effects, hindering its long-term usage for pain therapy. Currently, the thorough cellular and molecular mechanisms underlying morphine tolerance remain largely uncertain.

Methods: We searched the PubMed database with Medical subject headings (MeSH) including ‘morphine tolerance’, ‘cytokines’, ‘interleukin 1’, ‘interleukin 1 beta’, ‘interleukin 6’, ‘tumor necrosis factor alpha’, ‘interleukin 10’, ‘chemokines’. Manual searching was carried out by reviewing the reference lists of relevant studies obtained from the primary search. The searches covered the period from inception to November 1, 2017.

Results: The expression levels of certain chemokines and pro-inflammatory cytokines were significantly increased in animal models of morphine tolerance. Cytokines and cytokine receptor antagonist showed potent effect of alleviating the development of morphine tolerance.

Conclusion: Cytokines play a fundamental role in the development of morphine tolerance. Therapeutics targeting cytokines may become alternative strategies for the management of morphine tolerance.

Keywords: Morphine tolerance, pro-inflammatory cytokines, chemokines, anti-inflammatory cytokines, pain, glial cells.

Graphical Abstract

[1]
Bao, Y.; Gao, Y.; Yang, L.; Kong, X.; Yu, J.; Hou, W.; Hua, B. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin), 2015, 9(5), 235-243.
[http://dx.doi.org/10.1080/19336950.2015.1069450] [PMID: 26176938]
[2]
King, T.; Ossipov, M.H.; Vanderah, T.W.; Porreca, F.; Lai, J. Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals, 2005, 14(4), 194-205.
[http://dx.doi.org/10.1159/000087658] [PMID: 16215302]
[3]
Chen, Y.; Sommer, C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol. Neurobiol., 2009, 40(2), 101-107.
[http://dx.doi.org/10.1007/s12035-009-8074-z] [PMID: 19468867]
[4]
Zhang, X.; Bao, L.; Li, S. Opioid receptor trafficking and interaction in nociceptors. Br. J. Pharmacol., 2015, 172(2), 364-374.
[http://dx.doi.org/10.1111/bph.12653] [PMID: 24611685]
[5]
Ueda, H. Locus-specific involvement of anti-opioid systems in morphine tolerance and dependence. Ann. N. Y. Acad. Sci., 2004, 1025, 376-382.
[http://dx.doi.org/10.1196/annals.1307.046] [PMID: 15542739]
[6]
Narita, M.; Suzuki, M.; Narita, M.; Niikura, K.; Nakamura, A.; Miyatake, M.; Yajima, Y.; Suzuki, T. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: Comparison between etorphine and morphine. Neuroscience, 2006, 138(2), 609-619.
[http://dx.doi.org/10.1016/j.neuroscience.2005.11.046] [PMID: 16417975]
[7]
Martini, L.; Whistler, J.L. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr. Opin. Neurobiol., 2007, 17(5), 556-564.
[http://dx.doi.org/10.1016/j.conb.2007.10.004] [PMID: 18068348]
[8]
Pasternak, G.W.; Pan, Y.X. Mix and match: heterodimers and opioid tolerance. Neuron, 2011, 69(1), 6-8.
[http://dx.doi.org/10.1016/j.neuron.2010.12.030] [PMID: 21318174]
[9]
Szentirmay, A.K.; Király, K.P.; Lenkey, N.; Lackó, E.; Al-Khrasani, M.; Friedmann, T.; Timár, J.; Gyarmati, S.; Tóth, G.; Fürst, S.; Riba, P. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice. Brain Res. Bull., 2013, 90, 66-71.
[http://dx.doi.org/10.1016/j.brainresbull.2012.09.006] [PMID: 22995282]
[10]
Nestler, E.J.; Aghajanian, G.K. Molecular and cellular basis of addiction. Science, 1997, 278(5335), 58-63.
[http://dx.doi.org/10.1126/science.278.5335.58] [PMID: 9311927]
[11]
Cui, Y.; Chen, Y.; Zhi, J.L.; Guo, R.X.; Feng, J.Q.; Chen, P.X. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res., 2006, 1069(1), 235-243.
[http://dx.doi.org/10.1016/j.brainres.2005.11.066] [PMID: 16403466]
[12]
Chen, Y.; Geis, C.; Sommer, C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J. Neurosci., 2008, 28(22), 5836-5845.
[http://dx.doi.org/10.1523/JNEUROSCI.4170-07.2008] [PMID: 18509045]
[13]
Clark, A.K.; Old, E.A.; Malcangio, M. Neuropathic pain and cytokines: current perspectives. J. Pain Res., 2013, 6, 803-814.
[PMID: 24294006]
[14]
Jang, T.L.; Schaeffer, A.J. The role of cytokines in prostatitis. World J. Urol., 2003, 21(2), 95-99.
[http://dx.doi.org/10.1007/s00345-003-0335-2] [PMID: 12783173]
[15]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[16]
Strouse, T.B. The relationship between cytokines and pain/depression: a review and current status. Curr. Pain Headache Rep., 2007, 11(2), 98-103.
[http://dx.doi.org/10.1007/s11916-007-0005-y] [PMID: 17367587]
[17]
de Oliveira, C.M.; Sakata, R.K.; Issy, A.M.; Gerola, L.R.; Salomao, R. Cytokines and pain. Revista brasileira de anestesiologia. Cytokines Pain., 2011, 61255-259, 260-255, 137-242.
[http://dx.doi.org/10.1016/S0034-7094(11)70029-0]
[18]
Boraschi, D.; Lucchesi, D.; Hainzl, S.; Leitner, M.; Maier, E.; Mangelberger, D.; Oostingh, G.J.; Pfaller, T.; Pixner, C.; Posselt, G.; Italiani, P.; Nold, M.F.; Nold-Petry, C.A.; Bufler, P.; Dinarello, C.A. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur. Cytokine Netw., 2011, 22(3), 127-147.
[PMID: 22047735]
[19]
de Miguel, M.; Kraychete, D.C.; Meyer Nascimento, R.J. Chronic pain: cytokines, lymphocytes and chemokines. Inflamm. Allergy Drug Targets, 2014, 13(5), 339-349.
[http://dx.doi.org/10.2174/1871528114666150114170004] [PMID: 25587846]
[20]
Verri, W.A., Jr; Cunha, T.M.; Parada, C.A.; Poole, S.; Cunha, F.Q.; Ferreira, S.H. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol. Ther., 2006, 112(1), 116-138.
[http://dx.doi.org/10.1016/j.pharmthera.2006.04.001] [PMID: 16730375]
[21]
Lin, E.; Calvano, S.E.; Lowry, S.F. Inflammatory cytokines and cell response in surgery. Surgery, 2000, 127(2), 117-126.
[http://dx.doi.org/10.1067/msy.2000.101584] [PMID: 10686974]
[22]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[23]
Wolf, G.; Livshits, D.; Beilin, B.; Yirmiya, R.; Shavit, Y. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav. Immun., 2008, 22(7), 1072-1077.
[http://dx.doi.org/10.1016/j.bbi.2008.03.005] [PMID: 18442892]
[24]
Shavit, Y.; Wolf, G.; Goshen, I.; Livshits, D.; Yirmiya, R. Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain, 2005, 115(1-2), 50-59.
[http://dx.doi.org/10.1016/j.pain.2005.02.003] [PMID: 15836969]
[25]
Johnston, I.N.; Milligan, E.D.; Wieseler-Frank, J.; Frank, M.G.; Zapata, V.; Campisi, J.; Langer, S.; Martin, D.; Green, P.; Fleshner, M.; Leinwand, L.; Maier, S.F.; Watkins, L.R. A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci., 2004, 24(33), 7353-7365.
[http://dx.doi.org/10.1523/JNEUROSCI.1850-04.2004] [PMID: 15317861]
[26]
Hutchinson, M.R.; Coats, B.D.; Lewis, S.S.; Zhang, Y.; Sprunger, D.B.; Rezvani, N.; Baker, E.M.; Jekich, B.M.; Wieseler, J.L.; Somogyi, A.A.; Martin, D.; Poole, S.; Judd, C.M.; Maier, S.F.; Watkins, L.R. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav. Immun., 2008, 22(8), 1178-1189.
[http://dx.doi.org/10.1016/j.bbi.2008.05.004] [PMID: 18599265]
[27]
Berta, T.; Liu, T.; Liu, Y.C.; Xu, Z.Z.; Ji, R.R. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Mol. Pain, 2012, 8, 18.
[http://dx.doi.org/10.1186/1744-8069-8-18] [PMID: 22439811]
[28]
Merighi, S.; Gessi, S.; Varani, K.; Fazzi, D.; Stefanelli, A.; Borea, P.A. Morphine mediates a proinflammatory phenotype via μ-opioid receptor-PKCɛ-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem. Pharmacol., 2013, 86(4), 487-496.
[http://dx.doi.org/10.1016/j.bcp.2013.05.027] [PMID: 23796752]
[29]
Raghavendra, V.; Rutkowski, M.D.; DeLeo, J.A. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J. Neurosci., 2002, 22(22), 9980-9989.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09980.2002] [PMID: 12427855]
[30]
Hutchinson, M.R.; Lewis, S.S.; Coats, B.D.; Rezvani, N.; Zhang, Y.; Wieseler, J.L.; Somogyi, A.A.; Yin, H.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167(3), 880-893.
[http://dx.doi.org/10.1016/j.neuroscience.2010.02.011] [PMID: 20178837]
[31]
Grace, P.M.; Ramos, K.M.; Rodgers, K.M.; Wang, X.; Hutchinson, M.R.; Lewis, M.T.; Morgan, K.N.; Kroll, J.L.; Taylor, F.R.; Strand, K.A.; Zhang, Y.; Berkelhammer, D.; Huey, M.G.; Greene, L.I.; Cochran, T.A.; Yin, H.; Barth, D.S.; Johnson, K.W.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience, 2014, 280, 299-317.
[http://dx.doi.org/10.1016/j.neuroscience.2014.09.020] [PMID: 25241065]
[32]
Grace, P.M.; Maier, S.F.; Watkins, L.R. Opioid-induced central immune signaling: implications for opioid analgesia. Headache, 2015, 55(4), 475-489.
[http://dx.doi.org/10.1111/head.12552] [PMID: 25833219]
[33]
Hutchinson, M.R.; Zhang, Y.; Shridhar, M.; Evans, J.H.; Buchanan, M.M.; Zhao, T.X.; Slivka, P.F.; Coats, B.D.; Rezvani, N.; Wieseler, J.; Hughes, T.S.; Landgraf, K.E.; Chan, S.; Fong, S.; Phipps, S.; Falke, J.J.; Leinwand, L.A.; Maier, S.F.; Yin, H.; Rice, K.C.; Watkins, L.R. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun., 2010, 24(1), 83-95.
[http://dx.doi.org/10.1016/j.bbi.2009.08.004] [PMID: 19679181]
[34]
Eidson, L.N.; Murphy, A.Z. Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J. Neurosci., 2013, 33(40), 15952-15963.
[http://dx.doi.org/10.1523/JNEUROSCI.1609-13.2013] [PMID: 24089500]
[35]
Liang, Y.; Chu, H.; Jiang, Y.; Yuan, L. Morphine enhances IL-1beta release through toll-like receptor 4-mediated endocytic pathway in microglia. Purinergic Signal., 2016, 12(4), 637-645.
[http://dx.doi.org/10.1007/s11302-016-9525-4] [PMID: 27506813]
[36]
Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther., 2008, 117(2), 244-279.
[http://dx.doi.org/10.1016/j.pharmthera.2007.10.001] [PMID: 18155297]
[37]
Schaible, H.G.; von Banchet, G.S.; Boettger, M.K.; Bräuer, R.; Gajda, M.; Richter, F.; Hensellek, S.; Brenn, D.; Natura, G. The role of proinflammatory cytokines in the generation and maintenance of joint pain. Ann. N. Y. Acad. Sci., 2010, 1193, 60-69.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05301.x] [PMID: 20398009]
[38]
Lobito, A.A.; Gabriel, T.L.; Medema, J.P.; Kimberley, F.C. Disease causing mutations in the TNF and TNFR superfamilies: Focus on molecular mechanisms driving disease. Trends Mol. Med., 2011, 17(9), 494-505.
[http://dx.doi.org/10.1016/j.molmed.2011.05.006] [PMID: 21724465]
[39]
Shen, C.H.; Tsai, R.Y.; Shih, M.S.; Lin, S.L.; Tai, Y.H.; Chien, C.C.; Wong, C.S. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth. Analg., 2011, 112(2), 454-459.
[http://dx.doi.org/10.1213/ANE.0b013e3182025b15] [PMID: 21081778]
[40]
Shen, C.H.; Tsai, R.Y.; Tai, Y.H.; Lin, S.L.; Chien, C.C.; Wong, C.S. Intrathecal etanercept partially restores morphine’s antinociception in morphine-tolerant rats via attenuation of the glutamatergic transmission. Anesth. Analg., 2011, 113(1), 184-190.
[http://dx.doi.org/10.1213/ANE.0b013e318217f7eb] [PMID: 21490086]
[41]
Shen, C.H.; Tsai, R.Y.; Wong, C.S. Role of neuroinflammation in morphine tolerance: effect of tumor necrosis factor-α. Acta Anaesthesiol. Taiwan., 2012, 50(4), 178-182.
[http://dx.doi.org/10.1016/j.aat.2012.12.004] [PMID: 23385041]
[42]
Sun, J.; Liu, S.; Mata, M.; Fink, D.J.; Hao, S. Transgene-mediated expression of tumor necrosis factor soluble receptor attenuates morphine tolerance in rats. Gene Ther., 2012, 19(1), 101-108.
[http://dx.doi.org/10.1038/gt.2011.76] [PMID: 21614028]
[43]
Eidson, L.N.; Inoue, K.; Young, L.J.; Tansey, M.G.; Murphy, A.Z. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling. Neuropsychopharmacology, 2017, 42(3), 661-670.
[http://dx.doi.org/10.1038/npp.2016.131] [PMID: 27461080]
[44]
Fukagawa, H.; Koyama, T.; Kakuyama, M.; Fukuda, K. Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J. Anesth., 2013, 27(1), 93-97.
[http://dx.doi.org/10.1007/s00540-012-1469-4] [PMID: 22926420]
[45]
Zeng, X.; Lin, M.Y.; Wang, D.; Zhang, Y.; Hong, Y. Involvement of adrenomedullin in spinal glial activation following chronic administration of morphine in rats. Eur. J. Pain, 2014, 18(9), 1323-1332.
[http://dx.doi.org/10.1002/j.1532-2149.2014.493.x] [PMID: 24664661]
[46]
Wang, Z.; Ma, W.; Chabot, J.G.; Quirion, R. Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. FASEB J., 2009, 23(8), 2576-2586.
[http://dx.doi.org/10.1096/fj.08-128348] [PMID: 19299480]
[47]
Di Cesare Mannelli, L.; Corti, F.; Micheli, L.; Zanardelli, M.; Ghelardini, C. Delay of morphine tolerance by palmitoylethanolamide. BioMed Res. Int., 2015, 2015, 894732.
[http://dx.doi.org/10.1155/2015/894732] [PMID: 25874232]
[48]
Jücker, M.; Abts, H.; Li, W.; Schindler, R.; Merz, H.; Günther, A.; von Kalle, C.; Schaadt, M.; Diamantstein, T.; Feller, A.C. Expression of interleukin-6 and interleukin-6 receptor in Hodgkin’s disease. Blood, 1991, 77(11), 2413-2418.
[PMID: 1710152]
[49]
Hong, Y.; Wang, D.; Chabot, J.G.; Ma, W.; Chen, P.; Quirion, R. A role for protein kinase C-dependent upregulation of adrenomedullin in the development of morphine tolerance in male rats. J. Neurosci., 2010, 30(37), 12508-12516.
[http://dx.doi.org/10.1523/JNEUROSCI.0306-10.2010] [PMID: 20844145]
[50]
Wang, D.; Chen, P.; Li, Q.; Quirion, R.; Hong, Y. Blockade of adrenomedullin receptors reverses morphine tolerance and its neurochemical mechanisms. Behav. Brain Res., 2011, 221(1), 83-90.
[http://dx.doi.org/10.1016/j.bbr.2011.02.046] [PMID: 21382419]
[51]
Wang, D.; Li, J.; Chen, P.; Hong, Y. Upregulation of pronociceptive mediators and downregulation of opioid peptide by adrenomedullin following chronic exposure to morphine in rats. Neuroscience, 2014, 280, 31-39.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.048] [PMID: 25218960]
[52]
Niu, Z.; Ma, J.; Chu, H.; Zhao, Y.; Feng, W.; Cheng, Y. Melanocortin 4 receptor antagonists attenuates morphine antinociceptive tolerance, astroglial activation and cytokines expression in the spinal cord of rat. Neurosci. Lett., 2012, 529(2), 112-117.
[http://dx.doi.org/10.1016/j.neulet.2012.09.034] [PMID: 23022502]
[53]
Bajetto, A.; Bonavia, R.; Barbero, S.; Schettini, G. Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J. Neurochem., 2002, 82(6), 1311-1329.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01091.x] [PMID: 12354279]
[54]
Kim, C.H. Chemokine-chemokine receptor network in immune cell trafficking. Curr. Drug Targets Immune Endocr. Metabol. Disord., 2004, 4(4), 343-361.
[http://dx.doi.org/10.2174/1568008043339712] [PMID: 15578986]
[55]
Gonzalez, E.J.; Arms, L.; Vizzard, M.A. The role(s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. BioMed Res. Int., 2014, 2014, 120525.
[http://dx.doi.org/10.1155/2014/120525] [PMID: 24738044]
[56]
White, F.A.; Bhangoo, S.K.; Miller, R.J. Chemokines: integrators of pain and inflammation. Nat. Rev. Drug Discov., 2005, 4(10), 834-844.
[http://dx.doi.org/10.1038/nrd1852] [PMID: 16224455]
[57]
Abbadie, C.; Bhangoo, S.; De Koninck, Y.; Malcangio, M.; Melik-Parsadaniantz, S.; White, F.A. Chemokines and pain mechanisms. Brain Res. Brain Res. Rev., 2009, 60(1), 125-134.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.002] [PMID: 19146875]
[58]
Curfs, J.H.; Meis, J.F.; Hoogkamp-Korstanje, J.A. A primer on cytokines: sources, receptors, effects, and inducers. Clin. Microbiol. Rev., 1997, 10(4), 742-780.
[http://dx.doi.org/10.1128/CMR.10.4.742] [PMID: 9336671]
[59]
Bacon, K.; Baggiolini, M.; Broxmeyer, H.; Horuk, R.; Lindley, I.; Mantovani, A.; Maysushima, K.; Murphy, P.; Nomiyama, H.; Oppenheim, J. Chemokine/chemokine receptor nomenclature. J. Soc. Interferon Cytokine Res., 2002, 22, 1067-1068.
[60]
Ransohoff, R.M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity, 2009, 31(5), 711-721.
[http://dx.doi.org/10.1016/j.immuni.2009.09.010] [PMID: 19836265]
[61]
Roy, I.; Evans, D.B.; Dwinell, M.B. Chemokines and chemokine receptors: update on utility and challenges for the clinician. Surgery, 2014, 155(6), 961-973.
[http://dx.doi.org/10.1016/j.surg.2014.02.006] [PMID: 24856117]
[62]
Lazennec, G.; Richmond, A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol. Med., 2010, 16(3), 133-144.
[http://dx.doi.org/10.1016/j.molmed.2010.01.003] [PMID: 20163989]
[63]
Rutkowski, M.D.; DeLeo, J.A. The role of cytokines in the initiation and maintenance of chronic pain. Drug News Perspect., 2002, 15(10), 626-632.
[http://dx.doi.org/10.1358/dnp.2002.15.10.740239] [PMID: 12677247]
[64]
Constantin, G.; Majeed, M.; Giagulli, C.; Piccio, L.; Kim, J.Y.; Butcher, E.C.; Laudanna, C. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity, 2000, 13(6), 759-769.
[http://dx.doi.org/10.1016/S1074-7613(00)00074-1] [PMID: 11163192]
[65]
Peng, Y.; Guo, G.; Shu, B.; Liu, D.; Su, P.; Zhang, X.; Gao, F. Spinal CX3CL1/CX3CR1 may not directly participate in the development of morphine tolerance in rats. Neurochem. Res., 2017, 42(11), 3254-3267.
[http://dx.doi.org/10.1007/s11064-017-2364-z] [PMID: 28776289]
[66]
Chen, X.; Geller, E.B.; Rogers, T.J.; Adler, M.W. The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res., 2007, 1153, 52-57.
[http://dx.doi.org/10.1016/j.brainres.2007.03.066] [PMID: 17459345]
[67]
Zhao, C.M.; Guo, R.X.; Hu, F.; Meng, J.L.; Mo, L.Q.; Chen, P.X.; Liao, X.X.; Cui, Y.; Feng, J.Q. Spinal MCP-1 contributes to the development of morphine antinociceptive tolerance in rats. Am. J. Med. Sci., 2012, 344(6), 473-479.
[http://dx.doi.org/10.1097/MAJ.0b013e31826a82ce] [PMID: 23187120]
[68]
Liu, L.; Gao, X.J.; Ren, C.G.; Hu, J.H.; Liu, X.W.; Zhang, P.; Zhang, Z.W.; Fu, Z.J. Monocyte chemoattractant protein-1 contributes to morphine tolerance in rats with cancer-induced bone pain. Exp. Ther. Med., 2017, 13(2), 461-466.
[http://dx.doi.org/10.3892/etm.2016.3979] [PMID: 28352316]
[69]
Tanaka, T.; Minami, M.; Nakagawa, T.; Satoh, M. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci. Res., 2004, 48(4), 463-469.
[http://dx.doi.org/10.1016/j.neures.2004.01.004] [PMID: 15041200]
[70]
White, F.A.; Sun, J.; Waters, S.M.; Ma, C.; Ren, D.; Ripsch, M.; Steflik, J.; Cortright, D.N.; Lamotte, R.H.; Miller, R.J. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 14092-14097.
[http://dx.doi.org/10.1073/pnas.0503496102] [PMID: 16174730]
[71]
Zhang, J.; De Koninck, Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J. Neurochem., 2006, 97(3), 772-783.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03746.x] [PMID: 16524371]
[72]
Chen, X.; Geller, E.B.; Rogers, T.J.; Adler, M.W. Rapid heterologous desensitization of antinociceptive activity between mu or delta opioid receptors and chemokine receptors in rats. Drug Alcohol Depend., 2007, 88(1), 36-41.
[http://dx.doi.org/10.1016/j.drugalcdep.2006.09.010] [PMID: 17049756]
[73]
Szabo, I.; Chen, X.H.; Xin, L.; Adler, M.W.; Howard, O.M.; Oppenheim, J.J.; Rogers, T.J. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10276-10281.
[http://dx.doi.org/10.1073/pnas.102327699] [PMID: 12130663]
[74]
Rivat, C.; Sebaihi, S.; Van Steenwinckel, J.; Fouquet, S.; Kitabgi, P.; Pohl, M.; Melik Parsadaniantz, S.; Reaux-Le Goazigo, A. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain Behav. Immun., 2014, 38, 38-52.
[http://dx.doi.org/10.1016/j.bbi.2013.11.010] [PMID: 24263070]
[75]
Wilson, N.M.; Jung, H.; Ripsch, M.S.; Miller, R.J.; White, F.A. CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav. Immun., 2011, 25(3), 565-573.
[http://dx.doi.org/10.1016/j.bbi.2010.12.014] [PMID: 21193025]
[76]
Lin, C.P.; Kang, K.H.; Tu, H.J.; Wu, M.Y.; Lin, T.H.; Liou, H.C.; Sun, W.Z.; Fu, W.M. CXCL12/CXCR4 signaling contributes to the pathogenesis of opioid tolerance: A translational study. Anesth. Analg., 2017, 124(3), 972-979.
[http://dx.doi.org/10.1213/ANE.0000000000001480] [PMID: 28212183]
[77]
Lin, C.P.; Kang, K.H.; Lin, T.H.; Wu, M.Y.; Liou, H.C.; Chuang, W.J.; Sun, W.Z.; Fu, W.M. Role of spinal CXCL1 (GROα) in opioid tolerance: a human-to-rodent translational study. Anesthesiology, 2015, 122(3), 666-676.
[http://dx.doi.org/10.1097/ALN.0000000000000523] [PMID: 25383568]
[78]
Ye, D.; Bu, H.; Guo, G.; Shu, B.; Wang, W.; Guan, X.; Yang, H.; Tian, X.; Xiang, H.; Gao, F. Activation of CXCL10/CXCR3 signaling attenuates morphine analgesia: in-volvement of Gi protein. J. Mol. Neurosci., 2014, 53, 571-579.
[79]
Wang, W.; Peng, Y.; Yang, H.; Bu, H.; Guo, G.; Liu, D.; Shu, B.; Tian, X.; Luo, A.; Zhang, X.; Gao, F. Potential role of CXCL10/CXCR3 signaling in the development of morphine tolerance in periaqueductal gray. Neuropeptides, 2017, 65, 120-127.
[http://dx.doi.org/10.1016/j.npep.2017.07.004] [PMID: 28755808]
[80]
Booth, V.; Clark-Lewis, I.; Sykes, B.D. NMR structure of CXCR3 binding chemokine CXCL11 (ITAC). Protein Sci. Soc., 2004, 13, 2022-2028.
[81]
Cole, K.E.; Strick, C.A.; Paradis, T.J.; Ogborne, K.T.; Loetscher, M.; Gladue, R.P.; Lin, W.; Boyd, J.G.; Moser, B.; Wood, D.E.; Sahagan, B.G.; Neote, K. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med., 1998, 187(12), 2009-2021.
[http://dx.doi.org/10.1084/jem.187.12.2009] [PMID: 9625760]
[82]
Guo, G.; Peng, Y.; Xiong, B.; Liu, D.; Bu, H.; Tian, X.; Yang, H.; Wu, Z.; Cao, F.; Gao, F. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain. J. Neurochem., 2017, 141(4), 553-564.
[http://dx.doi.org/10.1111/jnc.13919] [PMID: 27926984]
[83]
Raeburn, C.D.; Sheppard, F.; Barsness, K.A.; Arya, J.; Harken, A.H. Cytokines for surgeons. Am. J. Surg., 2002, 183(3), 268-273.
[http://dx.doi.org/10.1016/S0002-9610(02)00781-X] [PMID: 11943124]
[84]
Mosser, D.M.; Zhang, X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev., 2008, 226, 205-218.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00706.x] [PMID: 19161426]
[85]
Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 2001, 19, 683-765.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.683] [PMID: 11244051]
[86]
Fiorentino, D.F.; Zlotnik, A.; Mosmann, T.R.; Howard, M.; O’Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol., 1991, 147(11), 3815-3822.
[PMID: 1940369]
[87]
Cunha, F.Q.; Poole, S.; Lorenzetti, B.B.; Veiga, F.H.; Ferreira, S.H. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. Br. J. Pharmacol., 1999, 126(1), 45-50.
[http://dx.doi.org/10.1038/sj.bjp.0702266] [PMID: 10051119]
[88]
Fiorentino, D.F.; Zlotnik, A.; Vieira, P.; Mosmann, T.R.; Howard, M.; Moore, K.W.; O’Garra, A. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol., 1991, 146(10), 3444-3451.
[PMID: 1827484]
[89]
Kasama, T.; Strieter, R.M.; Lukacs, N.W.; Lincoln, P.M.; Burdick, M.D.; Kunkel, S.L. Interleukin-10 expression and chemokine regulation during the evolution of murine type II collagen-induced arthritis. J. Clin. Invest., 1995, 95(6), 2868-2876.
[http://dx.doi.org/10.1172/JCI117993] [PMID: 7769128]
[90]
Wang, J.; Barke, R.A.; Charboneau, R.; Roy, S. Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J. Immunol., 2005, 174(1), 426-434.
[http://dx.doi.org/10.4049/jimmunol.174.1.426] [PMID: 15611267]
[91]
Lysle, D.T.; Coussons, M.E.; Watts, V.J.; Bennett, E.H.; Dykstra, L.A. Morphine-induced alterations of immune status: dose dependency, compartment specificity and antagonism by naltrexone. J. Pharmacol. Exp. Ther., 1993, 265(3), 1071-1078.
[PMID: 7685383]
[92]
Limiroli, E.; Gaspani, L.; Panerai, A.E.; Sacerdote, P. Differential morphine tolerance development in the modulation of macrophage cytokine production in mice. J. Leukoc. Biol., 2002, 72(1), 43-48.
[PMID: 12101261]
[93]
Sacerdote, P. Effects of in vitro and in vivo opioids on the production of IL-12 and IL-10 by murine macrophages. Ann. N. Y. Acad. Sci., 2003, 992, 129-140.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03144.x] [PMID: 12794053]
[94]
Bao, Y.H.; Zhou, Q.H.; Chen, R.; Xu, H.; Zeng, L.; Zhang, X.; Jiang, W.; Du, D. Gabapentin attenuates morphine tolerance through interleukin-10. Neuroreport, 2014, 25(2), 71-76.
[http://dx.doi.org/10.1097/WNR.0b013e328363fde8] [PMID: 24247277]
[95]
Lin, S.L.; Tsai, R.Y.; Tai, Y.H.; Cherng, C.H.; Wu, C.T.; Yeh, C.C.; Wong, C.S. Ultra-low dose naloxone upregulates interleukin-10 expression and suppresses neuroinflammation in morphine-tolerant rat spinal cords. Behav. Brain Res., 2010, 207(1), 30-36.
[http://dx.doi.org/10.1016/j.bbr.2009.09.034] [PMID: 19799935]
[96]
Tai, Y.H.; Tsai, R.Y.; Lin, S.L.; Yeh, C.C.; Wang, J.J.; Tao, P.L.; Wong, C.S. Amitriptyline suppresses neuroinflammation-dependent interleukin-10-p38 mitogen-activated protein kinase-heme oxygenase-1 signaling pathway in chronic morphine-infused rats. Anesthesiology, 2009, 110(6), 1379-1389.
[http://dx.doi.org/10.1097/ALN.0b013e31819fccd5] [PMID: 19417613]
[97]
Bao, Y.H.; Zhou, Q.H.; Chen, R.; Xu, H.; Zeng, L.L.; Zhang, X.; Jiang, W.; Du, D.P. Gabapentin enhances the morphine anti-nociceptive effect in neuropathic pain via the interleukin-10-heme oxygenase-1 signalling pathway in rats. J. Mol. Neurosci., 2014, 54, 137-146.
[98]
Choy, E.H.; Panayi, G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med., 2001, 344(12), 907-916.
[http://dx.doi.org/10.1056/NEJM200103223441207] [PMID: 11259725]
[99]
Zaringhalam, J.; Hormozi, A.; Tekieh, E.; Razavi, J.; Khanmohammad, R.; Golabi, S. Serum IL-10 involved in morphine tolerance development during adjuvant-induced arthritis. J. Physiol. Biochem., 2014, 70(2), 497-507.
[http://dx.doi.org/10.1007/s13105-014-0330-7] [PMID: 24643510]
[100]
Fairbanks, C.A.; Wilcox, G.L. Acute tolerance to spinally administered morphine compares mechanistically with chronically induced morphine tolerance. J. Pharmacol. Exp. Ther., 1997, 282(3), 1408-1417.
[PMID: 9316854]
[101]
Célèrier, E.; Laulin, J.; Larcher, A.; Le Moal, M.; Simonnet, G. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res., 1999, 847(1), 18-25.
[http://dx.doi.org/10.1016/S0006-8993(99)01998-8] [PMID: 10564731]
[102]
Ma, J.Y.; Zhao, Z.Q. The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat. Neuroreport, 2002, 13(14), 1781-1784.
[http://dx.doi.org/10.1097/00001756-200210070-00017] [PMID: 12395122]
[103]
Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv. Exp. Med. Biol., 2003, 521, 1-21.
[PMID: 12617561]
[104]
Watkins, L.R.; Hutchinson, M.R.; Johnston, I.N.; Maier, S.F. Glia: novel counter-regulators of opioid analgesia. Trends Neurosci., 2005, 28(12), 661-669.
[http://dx.doi.org/10.1016/j.tins.2005.10.001] [PMID: 16246435]
[105]
Hutchinson, M.R.; Bland, S.T.; Johnson, K.W.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. Sci. World J., 2007, 7, 98-111.
[http://dx.doi.org/10.1100/tsw.2007.230] [PMID: 17982582]
[106]
Wang, D.; Huo, Y.; Quirion, R.; Hong, Y. Involvement of adrenomedullin in the attenuation of acute morphine-induced analgesia in rats. Peptides, 2014, 54, 67-70.
[http://dx.doi.org/10.1016/j.peptides.2014.01.009] [PMID: 24468549]
[107]
Huang, B.Q.; Hong, Y. Involvement of adrenomedullin in the pathogenesis of in-flammatory pain and morphine tolerance. Sheng li xue bao: Acta physiologica Sinica, 2015, 67, 431-436.
[108]
Tai, Y.H.; Wang, Y.H.; Wang, J.J.; Tao, P.L.; Tung, C.S.; Wong, C.S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain, 2006, 124(1-2), 77-86.
[http://dx.doi.org/10.1016/j.pain.2006.03.018] [PMID: 16697108]
[109]
Liu, S.J.; Wang, R.I. Increased sensitivity of the central nervous system to morphine analgesia by amitriptyline in naive and morphine-tolerant rats. Biochem. Pharmacol., 1981, 30(15), 2103-2109.
[http://dx.doi.org/10.1016/0006-2952(81)90229-X] [PMID: 7295330]
[110]
Sivagnanam, G.; Adithan, C.; Raveendran, R.; Bapna, J.S. Amitriptyline analgesia: tolerance & cross tolerance pattern. Indian J. Med. Res., 1986, 84, 200-203.
[PMID: 3759175]
[111]
Tai, Y.H.; Tsai, R.Y.; Wang, Y.H.; Cherng, C.H.; Tao, P.L.; Liu, T.M.; Wong, C.S. Amitriptyline induces nuclear transcription factor-kappaB-dependent glutamate transporter upregulation in chronic morphine-infused rats. Neuroscience, 2008, 153(3), 823-831.
[http://dx.doi.org/10.1016/j.neuroscience.2008.02.055] [PMID: 18400403]
[112]
Huang, Y.N.; Tsai, R.Y.; Lin, S.L.; Chien, C.C.; Cherng, C.H.; Wu, C.T.; Yeh, C.C.; Wong, C.S. Amitriptyline attenuates astrocyte activation and morphine tolerance in rats: role of the PSD-95/NR1/nNOS/PKCγ signaling pathway. Behav. Brain Res., 2012, 229(2), 401-411.
[http://dx.doi.org/10.1016/j.bbr.2012.01.044] [PMID: 22309983]
[113]
Tai, Y.H.; Wang, Y.H.; Tsai, R.Y.; Wang, J.J.; Tao, P.L.; Liu, T.M.; Wang, Y.C.; Wong, C.S. Amitriptyline preserves morphine’s antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats. Pain, 2007, 129(3), 343-354.
[http://dx.doi.org/10.1016/j.pain.2007.01.031] [PMID: 17346885]
[114]
Habibi-Asl, B.; Vaez, H.; Najafi, M.; Bidaghi, A.; Ghanbarzadeh, S. Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice. Acta Anaesthesiol. Taiwan., 2014, 52(4), 163-168.
[http://dx.doi.org/10.1016/j.aat.2014.11.001] [PMID: 25557842]
[115]
Shen, K.F.; Crain, S.M. Ultra-low doses of naltrexone or etorphine increase morphine’s antinociceptive potency and attenuate tolerance/dependence in mice. Brain Res., 1997, 757(2), 176-190.
[http://dx.doi.org/10.1016/S0006-8993(97)00197-2] [PMID: 9200746]
[116]
Crain, S.M.; Shen, K.F. Antagonists of excitatory opioid receptor functions enhance morphine’s analgesic potency and attenuate opioid tolerance/dependence liability. Pain, 2000, 84(2-3), 121-131.
[http://dx.doi.org/10.1016/S0304-3959(99)00223-7] [PMID: 10666516]
[117]
Singh, V.P.; Patil, C.S.; Jain, N.K.; Singh, A.; Kulkarni, S.K. Paradoxical effects of opioid antagonist naloxone on SSRI-induced analgesia and tolerance in mice. Pharmacology, 2003, 69(3), 115-122.
[http://dx.doi.org/10.1159/000072662] [PMID: 14512696]
[118]
Lin, Y.S.; Tsai, R.Y.; Shen, C.H.; Chien, C.C.; Tsai, W.Y.; Guo, S.L.; Wong, C.S. Ultra-low dose naloxone restores the antinocicepitve effect of morphine in PTX-treated rats: association of IL-10 upregulation in the spinal cord. Life Sci., 2012, 91(5-6), 213-220.
[http://dx.doi.org/10.1016/j.lfs.2012.07.005] [PMID: 22820166]
[119]
Tsai, R.Y.; Tai, Y.H.; Tzeng, J.I.; Cherng, C.H.; Yeh, C.C.; Wong, C.S. Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of mu-opioid receptors from Gs-protein to coupling to Gi-protein. Neuroscience, 2009, 164(2), 435-443.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.015] [PMID: 19682558]
[120]
Tsai, R.Y.; Jang, F.L.; Tai, Y.H.; Lin, S.L.; Shen, C.H.; Wong, C.S. Ultra-low-dose naloxone restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in PTX-treated rats. Neuropsychopharmacology, 2008, 33, 2772-2782.
[121]
Shimoyama, M.; Shimoyama, N.; Inturrisi, C.E.; Elliott, K.J. Gabapentin enhances the antinociceptive effects of spinal morphine in the rat tail-flick test. Pain, 1997, 72(3), 375-382.
[http://dx.doi.org/10.1016/S0304-3959(97)00065-1] [PMID: 9313278]
[122]
Hansen, C.; Gilron, I.; Hong, M. The effects of intrathecal gabapentin on spinal morphine tolerance in the rat tail-flick and paw pressure tests. Anesth. Analg., 2004, 99(4), 1180-1184.
[http://dx.doi.org/10.1213/01.ANE.0000130383.87438.A9] [PMID: 15385372]
[123]
Wei, X.; Wei, W. Role of gabapentin in preventing fentanyl- and morphine-withdrawal-induced hyperalgesia in rats. J. Anesth., 2012, 26(2), 236-241.
[http://dx.doi.org/10.1007/s00540-011-1272-7] [PMID: 22048285]
[124]
Field, M.J.; Oles, R.J.; Lewis, A.S.; McCleary, S.; Hughes, J.; Singh, L. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br. J. Pharmacol., 1997, 121(8), 1513-1522.
[http://dx.doi.org/10.1038/sj.bjp.0701320] [PMID: 9283683]
[125]
Smiley, M.M.; Lu, Y.; Vera-Portocarrero, L.P.; Zidan, A.; Westlund, K.N. Intrathecal gabapentin enhances the analgesic effects of subtherapeutic dose morphine in a rat experimental pancreatitis model. Anesthesiology, 2004, 101(3), 759-765.
[http://dx.doi.org/10.1097/00000542-200409000-00026] [PMID: 15329602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy