Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Protein Solvent Interaction: Transition of Protein-solvent Interaction Concept from Basic Research into Solvent Manipulation of Chromatography

Author(s): Tsutomu Arakawa* and Yoshiko Kita

Volume 20, Issue 1, 2019

Page: [34 - 39] Pages: 6

DOI: 10.2174/1389203718666171024121529

Price: $65

Abstract

Previously, we have reviewed in this journal (Arakawa, T., Kita, Y., Curr. Protein Pept. Sci., 15, 608-620, 2014) the interaction of arginine with proteins and various applications of this solvent additive in the area of protein formulations and downstream processes. In this special issue, we expand the concept of protein-solvent interaction into the analysis of the effects of solvent additives on various column chromatography, including mixed-mode chromatography. Earlier in our research, we have studied the interactions of such a variety of solvent additives as sugars, salts, amino acids, polymers and organic solvents with a variety of proteins, which resulted in mechanistic understanding on their protein stabilization and precipitation effects, the latter known as Hofmeister series. While such a study was then a pure academic research, rapid development of genetic engineering technologies and resultant biotechnologies made it a valuable knowledge in fully utilizing solvent additives in manipulation of protein solution, including column chromatography.

Keywords: Protein-solvent interaction, additive, cavity, surface tension, preferential interaction, chromatography.

Graphical Abstract

[1]
Wolfe, L.S.; Barringer, C.P.; Mostafa, S.S.; Shukla, A.A. Multimodal chromatography: Characterization of protein binding and selectivity enhancement through mobile phase modulators. J. Chromatogr. A, 2014, 1340, 151-156.
[2]
Holstein, M.A.; Parimal, S.; McCallum, S.A.; Cramer, S.M. Mobile phase modifier effects in multimodal cation exchange chromatography. Biotechnol. Bioeng., 2012, 109, 176-186.
[3]
Hirano, A.; Arakawa, T.; Kameda, T. Interaction of arginine with Capto MMC in multimodal chromatography. J. Chromatogr. A, 2014, 1338, 58-66.
[4]
Hirano, A.; Arakawa, T.; Kameda, T. Effects of arginine on multimodal anion exchange chromatography. Protein Expr. Purif., 2015, 116, 105-112.
[5]
Arakawa, T.; Ponce, S.; Young, G. Isoform separation of proteins by mixed-mode chromatography. Protein Expr. Purif., 2015, 116, 144-151.
[6]
Pezzini, J.; Cabanne, C.; Gantier, R.; Janakiraman, V.N.; Santerelli, X. A comprehensive evaluation of mixed mode interactions of HEA and PPA HyperCelTM chromatographic media. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 976-977, 68-77.
[7]
Chung, W.K.; Freed, A.S.; Holstein, M.A.; McCallum, S.A.; Cramer, S.M. Evaluation of protein adsorption and preferential binding regions in multimodal chromatography using NMR. Proc. Natl. Acad. Sci. USA, 2010, 107, 16811-16816.
[8]
Pizarro, S.A.; Gunson, J.; Field, M.J.; Dinges, R.; Khoo, S.; Dalal, M.; Lee, M.; Kaleas, K.A.; Moiseff, K.; Garnick, S.; Reilly, D.E.; Laird, M.W.; Schmelzer, C.H. High-yield expression of human vascular endothelial growth factor VEGF165 in Escherichia coli and purification for therapeutic applications. Protein Expr. Purif., 2010, 72, 184-193.
[9]
Kaleas, K.A.; Schmelzer, C.H.; Pizarro, S.A. Industrial case study: Evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli. J. Chromatogr. A, 2010, 1217, 235-242.
[10]
Kaleas, K.A.; Tripodi, M.; Revelli, S.; Sharma, V.; Pizarro, S.A. Evaluation of a multimodal resin for selective capture of CHO-derived monoclonal antibodies directly from harvested cell culture fluid. J. Chromatogr. B ., 2014, 969, 256-263.
[11]
Ståhlberg, J.; Jőnsson, B.; Horváth, C. Theory for electrostatic interaction chromatography of proteins. Anal. Chem., 1991, 63, 1867-1874.
[12]
Yamamoto, S.; Nakanishi, K.; Matsuno, R.; Kakimoto, T. Ion exchange chromatography of proteins-prediction of elution curves and operating conditions. I. Theoretical consideration. Biotechnol. Bioeng., 1983, 25, 1465-1483.
[13]
Melander, W.R.; Corradinine, D.; Horváth, C. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory. J. Chromatogr., 1984, 317, 67-85.
[14]
Melander, W.; Horvath, C. Salt effect on hydrophobic interaction in precipitation and chromatography of proteins: An interpretation of the lyotropic series. Arch. Biochem. Biophys., 1977, 183, 200-215.
[15]
Arakawa, T. Thermodynamic analysis of the effect of concentrated salts on protein interaction with hydrophobic and polysaccharide columns. Arch. Biochem. Biopys., 1986, 248, 101-105.
[16]
Arakawa, T.; Timasheff, S.N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry, 1982, 21, 6545-6552.
[17]
Arakawa, T.; Timasheff, S.N. Stabilization of protein structure by sugars. Biochemistry, 1982, 21, 6536-6544.
[18]
Arakawa, T.; Timasheff, S.N. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys., 1983, 224, 169-177.
[19]
Arakawa, T.; Timasheff, S.N. Mechanism of protein salting in and salting out by divalent cation salts: Balance between hydration and salt binding. Biochemistry, 1984, 2, 5912-5923.
[20]
Arakawa, T.; Timasheff, S.N. Protein stabilization and destabilization by guanidinium salts. Biochemistry, 1984, 23, 5924-5929.
[21]
Arakawa, T.; Timasheff, S.N. The mechanism of action of Na glutamate, lysine HCl, and piperazine-N,N′-bis(2-ethanesulfonic acid) in the stabilization of tubulin and microtuble formation. J. Biol. Chem., 1984, 259, 4979-4586.
[22]
Arakawa, T.; Timasheff, S.N. The stabilization of proteins by osmolytes. Biophys. J., 1985, 47, 411-414.
[23]
Arakawa, T.; Timasheff, S.N. Theory of protein solubility. Methods Enzymol., 1985, 114, 49-77.
[24]
Arakawa, T.; Timasheff, S.N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry, 1985, 24, 6756-6762.
[25]
Arakawa, T.; Timasheff, S.N. Abnormal solubility behavior of beta-lactoglobulin: Salting-in by glycine and NaCl. Biochemistry, 1987, 26, 5147-5153.
[26]
Kita, Y.; Arakawa, T.; Lin, T.Y.; Timasheff, S.N. Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry, 1994, 33, 15178-15189.
[27]
Arakawa, T.; Bhat, R.; Timasheff, S.N. Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 1990, 29, 1924-1931.
[28]
Arakawa, T.; Bhat, R.; Timasheff, S.N. Preferential interactions determine protein solubility in three-component solutions: The MgCl2 system. Biochemistry, 1990, 29, 1914-1923.
[29]
Arakawa, T.; Timasheff, S.N. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys. Chem., 2007, 131, 62-70.
[30]
Courtenay, E.S.; Capp, M.W.; Anderson, C.F.; Record, M.T., Jr Vapor pressure osmometry studies of osmolyte-protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry, 2000, 39, 4455-4471.
[31]
Hofmeister, F. Zue Lehre von der Wirkung der Saltze. Arch. Exp. Pathol. Pharmakol., 1888, 24, 247-260.
[32]
Traube, J. The attraction pressure. J. Phys. Chem., 1910, 14, 451-470.
[33]
Traube, J. Theory of attraction pressure. J. Phys. Chem., 1910, 14, 471-475.
[34]
Pappenheimer, J.R.; Lepie, M.P.; Wyman, J. The surface tension of aqueous solutions of dipolar ions. J. Am. Chem. Soc., 1963, 58, 1851-1855.
[35]
Sinanoglu, O.; Abdulnur, S. Hydrophobic stacking of bases and the solvent denaturation of DNA. J. Photochem. Photobiol, 1964, 3, 333-342.
[36]
Sinanoglu, O.; Abdulnur, S. Effect of water and other solvents on the structure of biopolymers. Fed. Proc., 1965, 24, S12-S23.
[37]
Sinanoglu, O.; Halicioglu, H. Solvent effects on Cis-Trans, azobenzene isomerization - a detailed application of a theory of solvent effects on molecular associations. Ann. N. Y. Acad. Sci., 1969, 158, 308-312.
[38]
Fernández, A.; Sinanoglu, A. Denaturation of proteins in methanol/water mixtures. Biophys. Chem., 1985, 21, 163-166.
[39]
Robinson, D.R.; Jencks, W.P. The effect of concentrated salt solutions on the activity coefficient of acetyltetraglycine ethyl ester. J. Am. Chem. Soc., 1965, 87, 2470-2479.
[40]
von Hippel, P.H.; Wong, K.Y. The effects of ions on the kinetics of formation and the stability of the collagen fold. Biochemistry, 1962, 1, 664-674.
[41]
von Hippel, P.H.; Wong, K.Y. On the conformational stability of globular proteins. J. Biol. Chem., 1965, 240, 3909-3923.
[42]
Breslow, R.; Guo, T. Surface tension measurements show that chaotropic salting-in denaturants are not juts water-structure breakers. Proc. Natl. Acad. Sci. USA, 1990, 87, 167-169.
[43]
Siskova, M.; Hejtmankova, J.; Bartovska, L. Physico-chemical properties of the ternary urea-ammonium nitrate-water. Surface tension. Collect. Czech. Chem. Commun., 1985, 50, 1629-1635.
[44]
Potts, W.M.; Vogt, V.M. A simple method for immunoaffinity purification of nondenatured avian sarcoma and leukemia virus gag-containing proteins. Virology, 1987, 160, 494-497.
[45]
Durkee, K.H.; Roh, B.H.; Doellgast, G.J. Immunoaffinity chromatographic purification of Russell’s viper venom factor X activator using elution in high concentrations of magnesium chloride. Protein Expr. Purif., 1993, 4, 405-411.
[46]
Kummer, A.; Li-Chan, E.C. Application of an ELISA-elution assay as a screening tool for dissocation of yolk antibody-antigen complexes. J. Immunol. Methods, 1998, 211, 125-137.
[47]
Caughey, D.J.; Narhi, L.O.; Kita, Y.; Meng, S.Y.; Wen, D.; Chen, W.; Ratzkin, B.J.; Fujimoto, J.; Iwahara, T.; Yamamoto, T.; Arakawa, T. Fractionation of polycolonal antibodies to fragments of a neuroreceptor using three increasingly chaotropic solvents. J. Chromatogr. B Biomed. Sci. Appl., 1999, 728, 49-57.
[48]
Bull, H.B.; Breese, K. Interaction of alcohols with proteins. Biopolymers, 1978, 17, 2121-2131.
[49]
Inoue, H.; Timasheff, S.N. The interaction of beta-lactoglobulin with solvent components in mixed water-organic solvent systems. J. Am. Chem. Soc., 1968, 90, 1890-1898.
[50]
Lee, J.C.; Gekko, K.; Timasheff, S.N. Measurements of preferential solvent interactions by densimetric techniques. Methods Enzymol., 1979, 61, 26-49.
[51]
Lee, J.C.; Timasheff, S.N. Partial specific volumes and interactions with solvent components in guanidine hydrochloride. Biochemistry, 1974, 13, 257-265.
[52]
Prakash, V.; Loucheux, C.; Scheufele, S.; Gorbunoff, M.J.; Timasheff, S.N. Interaction of proteins with solvent components in 8 M urea. Arch. Biochem. Biophys., 1981, 210, 455-464.
[53]
Hong, J.; Capp, M.W.; Anderson, C.F.; Record, M.T. Preferential interactions in aqueous solution of urea and KCl. Biophys. Chem., 2003, 105, 517-532.
[54]
Timasheff, S.N.; Xie, G. Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys. Chem., 2003, 105, 421-448.
[55]
Timasheff, S.N.; Inoue, H. Preferential binding of solvent components to proteins in mixed water-organic solvent systems. Biochemistry, 1968, 7, 2501-2513.
[56]
Inoue, H.; Timasheff, S.N. Preferential and absolute interactions of solvent components with proteins in mixed solvent systems. Biopolymers, 1972, 11, 737-743.
[57]
Pittz, E.P.; Timasheff, S.N. Interaction of ribonuclease A with aqueous 2-methyl-2,4-pentanediol at pH 5.8. Biochemistry, 1978, 17, 615-623.
[58]
Gekko, K.; Timasehff, S.N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry, 1981, 20, 4667-4676.
[59]
Gekko, K.; Morikawa, T. Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. J. Biochem., 1981, 90, 39-50.
[60]
Lee, J.C.; Timasheff, S.N. The stabilization of proteins by sucrose. J. Biol. Chem., 1981, 256, 7193-7201.
[61]
Wyman, J. Linked functions and reciprocal effects in hemoglobin: A second look. Adv. Protein Chem., 1964, 19, 223-286.
[62]
Casassa, E.F.; Eisenberg, H. Thermodynamic analysis of multicomponent solutions. Adv. Protein Chem., 1964, 19, 287-395.
[63]
Cohen, G.; Eisenberg, H. Deoxyribonuclease solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers, 2968 6, 1077-1100.
[64]
Nozaki, Y.; Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem., 1971, 246, 2211-2217.
[65]
Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: evolution of osmolyte systems. Science, 1982, 217, 1214-1222.
[66]
Schneider, C.P.; Trout, B.L. Investigation of cosolute-protein preferential interaction coefficients: new insight into the mechanism by which arginine inhibits aggregation. J. Phys. Chem. B, 2009, 19, 2050-1058.
[67]
Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids, 2007, 33, 587-605.
[68]
Arakawa, T. Role of arginine in development of biopharmaceuticals. Yakugaku Zasshi, 2010, 130, 793-800.
[69]
Maity, H.; Karkaria, C.; Davagino, J. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20. Int. J. Pharm., 2009, 378, 122-135.
[70]
Maity, H.; Karkaria, C.; Davagnino, J. Effects of pH and arginine on the solubility and stability of a therapeutic protein (Fibroblast Growth Factor 20): relationship between solubility and stability. Curr. Pharm. Biotechnol., 2009, 10, 609-625.
[71]
Arakawa, T.; Futatsumori-Sugai, M.; Tsumoto, K.; Kita, Y.; Sato, H.; Ejima, D. MEP HyperCel chromatography II: binding, washing and elution. Protein Expr. Purif., 2010, 71, 168-173.
[72]
Arakawa, T.; Kita, Y.; Sato, H.; Ejima, D. MEP chromatography of antibody and Fc-fusion protein using aqueous arginine solution. Protein Expr. Purif., 2009, 63, 158-163.
[73]
Hirano, A.; Maruyama, T.; Shiraki, K.; Arakawa, T.; Kameda, T. Mechanism of protein desorption from 4-mercaptoethylpyridine resins by arginine solutions. J. Chromatogr. A, 2014, 1373, 141-148.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy