Review Article

治疗肽的药物化学:综合和设计优化的最新进展

卷 26, 期 13, 2019

页: [2330 - 2355] 页: 26

弟呕挨: 10.2174/0929867324666171012103559

价格: $65

摘要

肽疗法在过去十年取得了巨大进步。随着最近在综合药物发现环境中的科学和技术进步,现在或多或少地有效地解决了肽的许多固有弱点,这些弱点阻碍了它们作为治疗剂的发展。这些包括合成有机化学的最新发展,高通量重组生产策略,高分辨率分析方法,高通量筛选选项,巧妙的药物递送策略和新型制剂制剂。在这里,我们将简要介绍治疗性肽开发过程中使用的关键方法和策略,并选择该领域最新发展的实例。本综述的目的是强调药物化学家可能考虑的可行选择,以便改善肽导联实体中感兴趣的特定药理学特性,从而合理地评估这类分子在传统上(和不正确的)具有的治疗潜力。 )被认为是“不可挽回的”。

关键词: 治疗肽,固相肽合成,高通量筛选,钉合肽,非天然氨基酸,脂质体包封,环肽/拟肽,细胞穿透肽。

[1]
Tager, H.S.; Steiner, D.F. Peptide hormones. Annu. Rev. Biochem., 1974, 43(0), 509-538. [http://dx.doi.org/10.1146/annurev.bi.43.070174.002453]. [PMID: 4368999].
[2]
Snyder, S.H.; Innis, R.B. Peptide neurotransmitters. Annu. Rev. Biochem., 1979, 48, 755-782. [http://dx.doi.org/10.1146/annurev.bi.48.070179.003543]. [PMID: 38738].
[3]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. [http://dx.doi.org/10.1038/nbt1267]. [PMID: 17160061].
[4]
Sporn, M.B.; Roberts, A.B. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest., 1986, 78(2), 329-332. [http://dx.doi.org/10.1172/JCI112580]. [PMID: 3525608].
[5]
Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov., 2003, 2(7), 587-593. [http://dx.doi.org/10.1038/nrd1133]. [PMID: 12815383].
[6]
Lam, K.S.; Hruby, V.J.; Lebl, M.; Knapp, R.J.; Kazmierski, W.M.; Hersh, E.M.; Salmon, S.E. The chemical synthesis of large random peptide libraries and their use for the discovery of ligands for macromolecular acceptors. Bioorg. Med. Chem. Lett., 1993, 3(3), 419-424. [http://dx.doi.org/10.1016/S0960-894X(01)80224-9].
[7]
Merrifield, R.B. Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154. [http://dx.doi.org/10.1021/ja00897a025].
[8]
Carpino, L.A.; Han, G.Y. 9-Fluorenylmethoxy-carbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc., 1970, 92(19), 5748-5749. [http://dx.doi.org/10.1021/ja00722a043].
[9]
Rink, H. Solid-phase synthesis of protected peptide-fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett., 1987, 28(33), 3787-3790. [http://dx.doi.org/10.1016/S0040-4039(00)96384-6].
[10]
Kang, M.C.; Bray, B.; Lichty, M.; Mader, C.; Merutka, G. Methods and composition for peptide synthesis. U.S. Patent,, 6,015,881. 2000.
[11]
Harre, M.; Nickisch, K.; Tilstam, U. An efficient method for activation and recycling of trityl resins. React. Funct. Polym., 1999, 41(1-3), 111-114. [http://dx.doi.org/10.1016/S1381-5148(99)00039-5].
[12]
Zwanziger, D.; Böhme, I.; Lindner, D.; Beck-Sickinger, A.G. First selective agonist of the neuropeptide Y1-receptor with reduced size. J. Pept. Sci., 2009, 15(12), 856-866. [http://dx.doi.org/10.1002/psc.1188]. [PMID: 19890892].
[13]
Hofmann, S.; Frank, R.; Hey-Hawkins, E.; Beck-Sickinger, A.G.; Schmidt, P. Manipulating Y receptor subtype activation of short neuropeptide Y analogs by introducing carbaboranes. Neuropeptides, 2013, 47(2), 59-66. [http://dx.doi.org/10.1016/j.npep.2012.12.001]. [PMID: 23352609].
[14]
Palomo, J.M. Solid-phase peptide synthesis: An overview focused on the preparation of biologically relevant peptides. RSC Advances, 2014, 4(62), 32658-32672. [http://dx.doi.org/10.1039/C4RA02458C].
[15]
Broncel, M.; Falenski, J.A.; Wagner, S.C.; Hackenberger, C.P.; Koksch, B. How post-translational modifications influence amyloid formation: A systematic study of phosphorylation and glycosylation in model peptides. Chemistry, 2010, 16(26), 7881-7888. [http://dx.doi.org/10.1002/chem.200902452]. [PMID: 20491120].
[16]
Gao, L.; Uttamchandani, M.; Yao, S.Q. Comparative proteomic profiling of mammalian cell lysates using phosphopeptide microarrays. Chem. Commun. (Camb.), 2012, 48(16), 2240-2242. [http://dx.doi.org/10.1039/c2cc17701c]. [PMID: 22252530].
[17]
Gao, L.; Sun, H.; Yao, S.Q. Activity-based high-throughput determination of PTPs substrate specificity using a phosphopeptide microarray. Biopolymers, 2010, 94(6), 810-819. [http://dx.doi.org/10.1002/bip.21533]. [PMID: 20725946].
[18]
Sun, H.; Tan, L.P.; Gao, L.; Yao, S.Q. High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray. Chem. Commun. (Camb.), 2009, (6), 677-679. [http://dx.doi.org/10.1039/B817853D]. [PMID: 19322419].
[19]
Kalesh, K.A.; Tan, L.P.; Lu, K.; Gao, L.; Wang, J.; Yao, S.Q. Peptide-based activity-based probes (ABPs) for target-specific profiling of protein tyrosine phosphatases (PTPs). Chem. Commun. (Camb.), 2010, 46(4), 589-591. [http://dx.doi.org/10.1039/B919744C]. [PMID: 20062871].
[20]
Galan, M.C.; Dumy, P.; Renaudet, O. Multivalent glyco(cyclo)peptides. Chem. Soc. Rev., 2013, 42(11), 4599-4612. [http://dx.doi.org/10.1039/C2CS35413F]. [PMID: 23263159].
[21]
Hurevich, M.; Seeberger, P.H. Automated glycopeptide assembly by combined solid-phase peptide and oligosaccharide synthesis. Chem. Commun. (Camb.), 2014, 50(15), 1851-1853. [http://dx.doi.org/10.1039/C3CC48761J]. [PMID: 24401870].
[22]
Kragol, G.; Lumbierres, M.; Palomo, J.M.; Waldmann, H. Solid-phase synthesis of lipidated peptides. Angew. Chem. Int. Ed. Engl., 2004, 43(43), 5839-5842. [http://dx.doi.org/10.1002/anie.200461150]. [PMID: 15523710].
[23]
Triola, G.; Gerauer, M.; Görmer, K.; Brunsveld, L.; Waldmann, H. Solid-phase synthesis of lipidated Ras peptides employing the ellman sulfonamide linker. Chemistry, 2010, 16(31), 9585-9591. [http://dx.doi.org/10.1002/chem.201001642]. [PMID: 20648498].
[24]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N.; Smith, C.D. Azide monoliths as convenient flow reactors for efficient curtius rearrangement reactions. Org. Biomol. Chem., 2008, 6(9), 1587-1593. [http://dx.doi.org/10.1039/b801634h]. [PMID: 18421390].
[25]
Cai, H.; Sun, Z.Y.; Chen, M.S.; Zhao, Y.F.; Kunz, H.; Li, Y.M. Synthetic multivalent glycopeptide-lipopeptide antitumor vaccines: Impact of the cluster effect on the killing of tumor cells. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1699-1703. [http://dx.doi.org/10.1002/anie.201308875]. [PMID: 24449389].
[26]
Shen, B.; Makley, D.M.; Johnston, J.N. Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465(7301), 1027-1032. [http://dx.doi.org/10.1038/nature09125]. [PMID: 20577205].
[27]
Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science, 2007, 317(5839), 790-792. [http://dx.doi.org/10.1126/science.1145295]. [PMID: 17690291].
[28]
Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. The thermal and boron-catalysed direct amide formation reactions: Mechanistically understudied yet important processes. Chem. Commun. (Camb.), 2010, 46(11), 1813-1823. [http://dx.doi.org/10.1039/b923093a]. [PMID: 20198220].
[29]
Yoo, W.J.; Li, C.J. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc., 2006, 128(40), 13064-13065. [http://dx.doi.org/10.1021/ja064315b]. [PMID: 17017781].
[30]
Chan, W.K.; Ho, C.M.; Wong, M.K.; Che, C.M. Oxidative amide synthesis and N-terminal alpha-amino group ligation of peptides in aqueous medium. J. Am. Chem. Soc., 2006, 128(46), 14796-14797. [http://dx.doi.org/10.1021/ja064479s]. [PMID: 17105276].
[31]
Crich, D.; Sasaki, K. Reaction of thioacids with isocyanates and isothiocyanates: a convenient amide ligation process. Org. Lett., 2009, 11(15), 3514-3517. [http://dx.doi.org/10.1021/ol901370y]. [PMID: 19719195].
[32]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186), 776-779. [http://dx.doi.org/10.1126/science.7973629]. [PMID: 7973629].
[33]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 480(7378), 471-479. [http://dx.doi.org/10.1038/nature10702]. [PMID: 22193101].
[34]
Ullman, C.G.; Frigotto, L.; Cooley, R.N. In vitro methods for peptide display and their applications. Brief. Funct. Genomics, 2011, 10(3), 125-134. [http://dx.doi.org/10.1093/bfgp/elr010]. [PMID: 21628313].
[35]
Sidhu, S.S.; Lowman, H.B.; Cunningham, B.C.; Wells, J.A. Phage display for selection of novel binding peptides. Methods Enzymol., 2000, 328, 333-363. [http://dx.doi.org/10.1016/S0076-6879(00)28406-1]. [PMID: 11075354].
[36]
Gai, S.A.; Wittrup, K.D. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol., 2007, 17(4), 467-473. [http://dx.doi.org/10.1016/j.sbi.2007.08.012]. [PMID: 17870469].
[37]
Daugherty, P.S. Protein engineering with bacterial display. Curr. Opin. Struct. Biol., 2007, 17(4), 474-480. [http://dx.doi.org/10.1016/j.sbi.2007.07.004]. [PMID: 17728126].
[38]
Rockberg, J.; Löfblom, J.; Hjelm, B.; Uhlén, M.; Ståhl, S. Epitope mapping of antibodies using bacterial surface display. Nat. Methods, 2008, 5(12), 1039-1045. [http://dx.doi.org/10.1038/nmeth.1272]. [PMID: 19029907].
[39]
Mattheakis, L.C.; Bhatt, R.R.; Dower, W.J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA, 1994, 91(19), 9022-9026. [http://dx.doi.org/10.1073/pnas.91.19.9022]. [PMID: 7522328].
[40]
Odegrip, R.; Coomber, D.; Eldridge, B.; Hederer, R.; Kuhlman, P.A.; Ullman, C.; FitzGerald, K.; McGregor, D. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2806-2810. [http://dx.doi.org/10.1073/pnas.0400219101]. [PMID: 14981246].
[41]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17. [http://dx.doi.org/10.1016/j.addr.2012.09.019]. [PMID: 11259830].
[42]
Winn, M.; Fyans, J.K.; Zhuo, Y.; Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep., 2016, 33(2), 317-347. [http://dx.doi.org/10.1039/C5NP00099H]. [PMID: 26699732].
[43]
Traber, R.; Hofmann, H.; Kobel, H. Cyclosporins--new analogues by precursor directed biosynthesis. J. Antibiot. , 1989, 42(4), 591-597. [http://dx.doi.org/10.7164/antibiotics.42.591]. [PMID: 2722674].
[44]
Hojati, Z.; Milne, C.; Harvey, B.; Gordon, L.; Borg, M.; Flett, F.; Wilkinson, B.; Sidebottom, P.J.; Rudd, B.A.; Hayes, M.A.; Smith, C.P.; Micklefield, J. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol., 2002, 9(11), 1175-1187. [http://dx.doi.org/10.1016/S1074-5521(02)00252-1]. [PMID: 12445768].
[45]
Liu, J.; Zhu, X.; Kim, S.J.; Zhang, W. Antimycin-type depsipeptides: Discovery, biosynthesis, chemical synthesis, and bioactivities. Nat. Prod. Rep., 2016, 33(10), 1146-1165. [http://dx.doi.org/10.1039/C6NP00004E]. [PMID: 27307039].
[46]
Reimer, D.; Pos, K.M.; Thines, M.; Grün, P.; Bode, H.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol., 2011, 7(12), 888-890. [http://dx.doi.org/10.1038/nchembio.688]. [PMID: 21926994].
[47]
Wyatt, M.A.; Magarvey, N.A. Optimizing dimodular nonribosomal peptide synthetases and natural dipeptides in an Escherichia coli heterologous host. Biochem. Cell Biol., 2013, 91(4), 203-208. [http://dx.doi.org/10.1139/bcb-2012-0097]. [PMID: 23859013].
[48]
Li, M.Z.; Elledge, S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods, 2007, 4(3), 251-256. [http://dx.doi.org/10.1038/nmeth1010]. [PMID: 17293868].
[49]
Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., III; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods, 2009, 6(5), 343-345. [http://dx.doi.org/10.1038/nmeth.1318]. [PMID: 19363495].
[50]
Shao, Z.; Zhao, H.; Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 2009, 37(2)e16 [http://dx.doi.org/10.1093/nar/gkn991]. [PMID: 19074487].
[51]
Li, L.; Zhao, Y.; Ruan, L.; Yang, S.; Ge, M.; Jiang, W.; Lu, Y. A stepwise increase in pristinamycin II biosynthesis by Streptomyces pristinaespiralis through combinatorial metabolic engineering. Metab. Eng., 2015, 29, 12-25. [http://dx.doi.org/10.1016/j.ymben.2015.02.001]. [PMID: 25708513].
[52]
Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11)e3647 [http://dx.doi.org/10.1371/journal.pone.0003647]. [PMID: 18985154].
[53]
de Kok, S.; Stanton, L.H.; Slaby, T.; Durot, M.; Holmes, V.F.; Patel, K.G.; Platt, D.; Shapland, E.B.; Serber, Z.; Dean, J.; Newman, J.D.; Chandran, S.S. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol., 2014, 3(2), 97-106. [http://dx.doi.org/10.1021/sb4001992]. [PMID: 24932563].
[54]
Shao, Z.; Rao, G.; Li, C.; Abil, Z.; Luo, Y.; Zhao, H. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol., 2013, 2(11), 662-669. [http://dx.doi.org/10.1021/sb400058n]. [PMID: 23968564].
[55]
Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 49-55. [http://dx.doi.org/10.1038/nrm3486]. [PMID: 23169466].
[56]
Cobb, R.E.; Wang, Y.; Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol., 2015, 4(6), 723-728. [http://dx.doi.org/10.1021/sb500351f]. [PMID: 25458909].
[57]
Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol., 2015, 4(9), 1020-1029. [http://dx.doi.org/10.1021/acssynbio.5b00038]. [PMID: 25806970].
[58]
Lincke, T.; Behnken, S.; Ishida, K.; Roth, M.; Hertweck, C. Closthioamide: An unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. Engl., 2010, 49(11), 2011-2013. [http://dx.doi.org/10.1002/anie.200906114]. [PMID: 20157900].
[59]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459. [http://dx.doi.org/10.1038/nature14098]. [PMID: 25561178].
[60]
Wilson, M.C.; Mori, T.; Rückert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Gernert, C.; Steffens, U.A.; Heycke, N.; Schmitt, S.; Rinke, C.; Helfrich, E.J.; Brachmann, A.O.; Gurgui, C.; Wakimoto, T.; Kracht, M.; Crüsemann, M.; Hentschel, U.; Abe, I.; Matsunaga, S.; Kalinowski, J.; Takeyama, H.; Piel, J. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506(7486), 58-62. [http://dx.doi.org/10.1038/nature12959]. [PMID: 24476823].
[61]
Johnston, C.W.; Plumb, J.; Li, X.; Grinstein, S.; Magarvey, N.A. Informatic analysis reveals Legionella as a source of novel natural products. Synth Syst Biotechnol, 2016, 1(2), 130-136. [http://dx.doi.org/10.1016/j.synbio.2015.12.001]. [PMID: 29062936].
[62]
Skinnider, M.A.; Dejong, C.A.; Rees, P.N.; Johnston, C.W.; Li, H.; Webster, A.L.; Wyatt, M.A.; Magarvey, N.A. Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res., 2015, 43(20), 9645-9662. [PMID: 26442528].
[63]
Skinnider, M.A.; Johnston, C.W.; Edgar, R.E.; Dejong, C.A.; Merwin, N.J.; Rees, P.N.; Magarvey, N.A. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl. Acad. Sci. USA, 2016, 113(42), E6343-E6351. [http://dx.doi.org/10.1073/pnas.1609014113]. [PMID: 27698135].
[64]
Yang, L.; Ibrahim, A.; Johnston, C.W.; Skinnider, M.A.; Ma, B.; Magarvey, N.A. Exploration of nonribosomal peptide families with an automated informatic search algorithm. Chem. Biol., 2015, 22(9), 1259-1269. [http://dx.doi.org/10.1016/j.chembiol.2015.08.008]. [PMID: 26364933].
[65]
Dejong, C.A.; Chen, G.M.; Li, H.; Johnston, C.W.; Edwards, M.R.; Rees, P.N.; Skinnider, M.A.; Webster, A.L.; Magarvey, N.A. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat. Chem. Biol., 2016, 12(12), 1007-1014. [http://dx.doi.org/10.1038/nchembio.2188]. [PMID: 27694801].
[66]
Johnston, C.W.; Skinnider, M.A.; Wyatt, M.A.; Li, X.; Ranieri, M.R.; Yang, L.; Zechel, D.L.; Ma, B.; Magarvey, N.A. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat. Commun., 2015, 6, 8421. [http://dx.doi.org/10.1038/ncomms9421]. [PMID: 26412281].
[67]
Hamley, I.W. Peptide fibrillization. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8128-8147. [http://dx.doi.org/10.1002/anie.200700861]. [PMID: 17935097].
[68]
Riber, D.; Macchi, F.; Giehm, L.; Andersen, M.S.; Osterlund, T.; Norregaard, P.; Valeur, A.; Neerup, T.S. A novel glucagon analogue, ZP-GA-1, displays increased chemical and physical stability in liquid formulation. Diabetes, 2013, 62, A103-A103.
[69]
Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H.A.; Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H. Improving oral bioavailability of peptides by multiple N-methylation: Somatostatin analogues. Angew. Chem. Int. Ed. Engl., 2008, 47(14), 2595-2599. [http://dx.doi.org/10.1002/anie.200705797]. [PMID: 18297660].
[70]
White, T.R.; Renzelman, C.M.; Rand, A.C.; Rezai, T.; McEwen, C.M.; Gelev, V.M.; Turner, R.A.; Linington, R.G.; Leung, S.S.; Kalgutkar, A.S.; Bauman, J.N.; Zhang, Y.; Liras, S.; Price, D.A.; Mathiowetz, A.M.; Jacobson, M.P.; Lokey, R.S. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol., 2011, 7(11), 810-817. [http://dx.doi.org/10.1038/nchembio.664]. [PMID: 21946276].
[71]
Henchey, L.K.; Jochim, A.L.; Arora, P.S. Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr. Opin. Chem. Biol., 2008, 12(6), 692-697. [http://dx.doi.org/10.1016/j.cbpa.2008.08.019]. [PMID: 18793750].
[72]
Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Probing the alpha-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem. Biol. Drug Des., 2010, 75(4), 348-359. [http://dx.doi.org/10.1111/j.1747-0285.2010.00951.x]. [PMID: 20331649].
[73]
Sawyer, T.K. AILERON therapeutics. Chem. Biol. Drug Des., 2009, 73(1), 3-6. [http://dx.doi.org/10.1111/j.1747-0285.2008.00744.x]. [PMID: 19152629].
[74]
Cromm, P.M.; Spiegel, J.; Grossmann, T.N. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem. Biol., 2015, 10(6), 1362-1375. [http://dx.doi.org/10.1021/cb501020r]. [PMID: 25798993].
[75]
Kee, K.S.; Jois, S.D. Design of beta-turn based therapeutic agents. Curr. Pharm. Des., 2003, 9(15), 1209-1224. [http://dx.doi.org/10.2174/1381612033454900]. [PMID: 12769748].
[76]
O’Neil, K.T.; Hoess, R.H.; Jackson, S.A.; Ramachandran, N.S.; Mousa, S.A.; DeGrado, W.F. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins, 1992, 14(4), 509-515. [http://dx.doi.org/10.1002/prot.340140411]. [PMID: 1438188].
[77]
Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 254-269. [http://dx.doi.org/10.1002/anie.201205674]. [PMID: 23161799].
[78]
Penchala, S.C.; Miller, M.R.; Pal, A.; Dong, J.; Madadi, N.R.; Xie, J.; Joo, H.; Tsai, J.; Batoon, P.; Samoshin, V.; Franz, A.; Cox, T.; Miles, J.; Chan, W.K.; Park, M.S.; Alhamadsheh, M.M. A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol., 2015, 11(10), 793-798. [http://dx.doi.org/10.1038/nchembio.1907]. [PMID: 26344696].
[79]
Schafmeister, C.E.; Po, J.; Verdine, G.L. An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc., 2000, 122(24), 5891-5892. [http://dx.doi.org/10.1021/ja000563a].
[80]
Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.H.; Olson, K.A.; Kesavan, K.; Gangurde, P.; Mukherjee, A.; Baker, T.; Darlak, K.; Elkin, C.; Filipovic, Z.; Qureshi, F.Z.; Cai, H.; Berry, P.; Feyfant, E.; Shi, X.E.; Horstick, J.; Annis, D.A.; Manning, A.M.; Fotouhi, N.; Nash, H.; Vassilev, L.T.; Sawyer, T.K. Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. USA, 2013, 110(36), E3445-E3454. [http://dx.doi.org/10.1073/pnas.1303002110]. [PMID: 23946421].
[81]
Mendive-Tapia, L.; Preciado, S.; García, J.; Ramón, R.; Kielland, N.; Albericio, F.; Lavilla, R. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun., 2015, 6, 7160. [http://dx.doi.org/10.1038/ncomms8160]. [PMID: 25994485].
[82]
Vinogradova, E.V.; Zhang, C.; Spokoyny, A.M.; Pentelute, B.L.; Buchwald, S.L. Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526(7575), 687-691. [http://dx.doi.org/10.1038/nature15739]. [PMID: 26511579].
[83]
Verdine, G.L.; Hilinski, G.J. Stapled peptides for intracellular drug targets. Methods Enzymol., 2012, 503, 3-33. [http://dx.doi.org/10.1016/B978-0-12-396962-0.00001-X]. [PMID: 22230563].
[84]
Aoki, K.; Maeda, M.; Nakae, T.; Okada, Y.; Ohya, K.; Chiba, K. A disulfide bond replacement strategy enables the efficient design of artificial therapeutic peptides. Tetrahedron, 2014, 70(42), 7774-7779. [http://dx.doi.org/10.1016/j.tet.2014.05.079].
[85]
Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926. [http://dx.doi.org/10.1021/cr400031z]. [PMID: 24446748].
[86]
Cheek, S.; Krishna, S.S.; Grishin, N.V. Structural classification of small, disulfide-rich protein domains. J. Mol. Biol., 2006, 359(1), 215-237. [http://dx.doi.org/10.1016/j.jmb.2006.03.017]. [PMID: 16618491].
[87]
Yang, D.; Biragyn, A.; Kwak, L.W.; Oppenheim, J.J. Mammalian defensins in immunity: More than just microbicidal. Trends Immunol., 2002, 23(6), 291-296. [http://dx.doi.org/10.1016/S1471-4906(02)02246-9]. [PMID: 12072367].
[88]
Hartman, M.C.; Josephson, K.; Lin, C.W.; Szostak, J.W. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One, 2007, 2(10)e972 [http://dx.doi.org/10.1371/journal.pone.0000972]. [PMID: 17912351].
[89]
Schlippe, Y.V.; Hartman, M.C.; Josephson, K.; Szostak, J.W. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J. Am. Chem. Soc., 2012, 134(25), 10469-10477. [http://dx.doi.org/10.1021/ja301017y]. [PMID: 22428867].
[90]
Subtelny, A.O.; Hartman, M.C.; Szostak, J.W. Ribosomal synthesis of N-methyl peptides. J. Am. Chem. Soc., 2008, 130(19), 6131-6136. [http://dx.doi.org/10.1021/ja710016v]. [PMID: 18402453].
[91]
Seebeck, F.P.; Ricardo, A.; Szostak, J.W. Artificial lantipeptides from in vitro translations. Chem. Commun. (Camb.), 2011, 47(21), 6141-6143. [http://dx.doi.org/10.1039/c0cc05663d]. [PMID: 21528125].
[92]
Ohta, A.; Murakami, H.; Higashimura, E.; Suga, H. Synthesis of polyester by means of genetic code reprogramming. Chem. Biol., 2007, 14(12), 1315-1322. [http://dx.doi.org/10.1016/j.chembiol.2007.10.015]. [PMID: 18096500].
[93]
Ohuchi, M.; Murakami, H.; Suga, H. The flexizyme system: A highly flexible tRNA aminoacylation tool for the translation apparatus. Curr. Opin. Chem. Biol., 2007, 11(5), 537-542. [http://dx.doi.org/10.1016/j.cbpa.2007.08.011]. [PMID: 17884697].
[94]
Xiao, H.; Murakami, H.; Suga, H.; Ferré-D’Amaré, A.R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature, 2008, 454(7202), 358-361. [http://dx.doi.org/10.1038/nature07033]. [PMID: 18548004].
[95]
Goto, Y.; Katoh, T.; Suga, H. Flexizymes for genetic code reprogramming. Nat. Protoc., 2011, 6(6), 779-790. [http://dx.doi.org/10.1038/nprot.2011.331]. [PMID: 21637198].
[96]
Reid, P.C.; Goto, Y.; Katoh, T.; Suga, H. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers. Methods Mol. Biol., 2012, 805, 335-348. [http://dx.doi.org/10.1007/978-1-61779-379-0_19]. [PMID: 22094815].
[97]
Osberger, T.J.; Rogness, D.C.; Kohrt, J.T.; Stepan, A.F.; White, M.C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature, 2016, 537(7619), 214-219. [http://dx.doi.org/10.1038/nature18941]. [PMID: 27479323].
[98]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W-L.; Raj, R.; Faulkner, S.; Vallée, M.R.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M-L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312)aag1465 [http://dx.doi.org/10.1126/science.aag1465]. [PMID: 27708059].
[99]
Varga, C.M.; Wickham, T.J.; Lauffenburger, D.A. Receptor-mediated targeting of gene delivery vectors: Insights from molecular mechanisms for improved vehicle design. Biotechnol. Bioeng., 2000, 70(6), 593-605. [http://dx.doi.org/10.1002/1097-0290(20001220)70:6<593:AID-BIT1>3.0.CO;2-N]. [PMID: 11064328].
[100]
Arnheiter, H.; Haller, O. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J., 1988, 7(5), 1315-1320. [http://dx.doi.org/10.1002/j.1460-2075.1988.tb02946.x]. [PMID: 3409866].
[101]
White, T.R.; Renzelman, C.M.; Rand, A.C.; Rezai, T.; McEwen, C.M.; Gelev, V.M.; Turner, R.A.; Linington, R.G.; Leung, S.S.; Kalgutkar, A.S.; Bauman, J.N.; Zhang, Y.; Liras, S.; Price, D.A.; Mathiowetz, A.M.; Jacobson, M.P.; Lokey, R.S. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol., 2011, 7(11), 810-817. [http://dx.doi.org/10.1038/nchembio.664]. [PMID: 21946276].
[102]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500. [http://dx.doi.org/10.1039/C5SC04392A]. [PMID: 28660018].
[103]
Kozlowski, A.; Harris, J.M. Improvements in protein PEGylation: Pegylated interferons for treatment of hepatitis C. J. Control. Release, 2001, 72(1-3), 217-224. [http://dx.doi.org/10.1016/S0168-3659(01)00277-2]. [PMID: 11390000].
[104]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221. [http://dx.doi.org/10.1038/nrd1033]. [PMID: 12612647].
[105]
Briers, Y.; Walmagh, M.; Van Puyenbroeck, V.; Cornelissen, A.; Cenens, W.; Aertsen, A.; Oliveira, H.; Azeredo, J.; Verween, G.; Pirnay, J.P.; Miller, S.; Volckaert, G.; Lavigne, R. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio, 2014, 5(4), e01379-e14. [http://dx.doi.org/10.1128/mBio.01379-14]. [PMID: 24987094].
[106]
Schmidt, N.W.; Deshayes, S.; Hawker, S.; Blacker, A.; Kasko, A.M.; Wong, G.C. Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS Nano, 2014, 8(9), 8786-8793. [http://dx.doi.org/10.1021/nn502201a]. [PMID: 25130648].
[107]
Ma, W.; Cheetham, A.G.; Cui, H. Building Nanostructures with Drugs. Nano Today, 2016, 11(1), 13-30. [http://dx.doi.org/10.1016/j.nantod.2015.11.003]. [PMID: 27066106].
[108]
Arosio, D.; Casagrande, C. Advancement in integrin facilitated drug delivery. Adv. Drug Deliv. Rev., 2016, 97, 111-143. [http://dx.doi.org/10.1016/j.addr.2015.12.001]. [PMID: 26686830].
[109]
Wender, P.A.; Cooley, C.B.; Geihe, E.I. Beyond cell penetrating peptides: Designed molecular transporters. Drug Discov. Today. Technol., 2012, 9(1), e49-e55. [http://dx.doi.org/10.1016/j.ddtec.2011.07.004]. [PMID: 22712022].
[110]
Zhang, P.; Cheetham, A.G.; Lock, L.L.; Cui, H. Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug. Chem., 2013, 24(4), 604-613. [http://dx.doi.org/10.1021/bc300585h]. [PMID: 23514455].
[111]
Zhang, P.; Lock, L.L.; Cheetham, A.G.; Cui, H. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol. Pharm., 2014, 11(3), 964-973. [http://dx.doi.org/10.1021/mp400619v]. [PMID: 24437690].
[112]
Wang, H.B.; Liu, G.Y.; Gao, H.Q.; Wang, Y.B. A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery. Polym. Chem., 2015, 6(26), 4715-4718. [http://dx.doi.org/10.1039/C5PY00584A].
[113]
Yuan, Y.; Kwok, R.T.; Tang, B.Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc., 2014, 136(6), 2546-2554. [http://dx.doi.org/10.1021/ja411811w]. [PMID: 24437551].
[114]
Lock, L.L.; Tang, Z.; Keith, D.; Reyes, C.; Cui, H.G. Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Lett., 2015, 4(5), 552-555. [http://dx.doi.org/10.1021/acsmacrolett.5b00170].
[115]
Hu, B.H.; Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc., 2003, 125(47), 14298-14299. [http://dx.doi.org/10.1021/ja038593b]. [PMID: 14624577].
[116]
Matson, J.B.; Stupp, S.I. Drug release from hydrazone-containing peptide amphiphiles. Chem. Commun. (Camb.), 2011, 47(28), 7962-7964. [http://dx.doi.org/10.1039/c1cc12570b]. [PMID: 21674107].
[117]
Couvreur, P.; Stella, B.; Reddy, L.H.; Hillaireau, H.; Dubernet, C.; Desmaële, D.; Lepêtre-Mouelhi, S.; Rocco, F.; Dereuddre-Bosquet, N.; Clayette, P.; Rosilio, V.; Marsaud, V.; Renoir, J.M.; Cattel, L. Squalenoyl nanomedicines as potential therapeutics. Nano Lett., 2006, 6(11), 2544-2548. [http://dx.doi.org/10.1021/nl061942q]. [PMID: 17090088].
[118]
Cheetham, A.G.; Zhang, P.; Lin, Y.A.; Lock, L.L.; Cui, H. Supramolecular nanostructures formed by anticancer drug assembly. J. Am. Chem. Soc., 2013, 135(8), 2907-2910. [http://dx.doi.org/10.1021/ja3115983]. [PMID: 23379791].
[119]
Lin, Y.A.; Cheetham, A.G.; Zhang, P.; Ou, Y.C.; Li, Y.; Liu, G.; Hermida-Merino, D.; Hamley, I.W.; Cui, H. Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. ACS Nano, 2014, 8(12), 12690-12700. [http://dx.doi.org/10.1021/nn505688b]. [PMID: 25415538].
[120]
Zhang, D.; Qi, G.B.; Zhao, Y.X.; Qiao, S.L.; Yang, C.; Wang, H. In Situ Formation of Nanofibers from Purpurin18-Peptide Conjugates and the Assembly Induced Retention Effect in Tumor Sites. Adv. Mater., 2015, 27(40), 6125-6130. [http://dx.doi.org/10.1002/adma.201502598]. [PMID: 26350172].
[121]
Kratz, F.; Müller, I.A.; Ryppa, C.; Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008, 3(1), 20-53. [http://dx.doi.org/10.1002/cmdc.200700159]. [PMID: 17963208].
[122]
Valéry, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.; Narayanan, T.; Dedieu, J.C.; Keller, G.; Torres, M.L.; Cherif-Cheikh, R.; Calvo, P.; Artzner, F. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10258-10262. [http://dx.doi.org/10.1073/pnas.1730609100]. [PMID: 12930900].
[123]
Pouget, E.; Fay, N.; Dujardin, E.; Jamin, N.; Berthault, P.; Perrin, L.; Pandit, A.; Rose, T.; Valéry, C.; Thomas, D.; Paternostre, M.; Artzner, F. Elucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates. J. Am. Chem. Soc., 2010, 132(12), 4230-4241. [http://dx.doi.org/10.1021/ja9088023]. [PMID: 20199027].
[124]
Valéry, C.; Artzner, F.; Robert, B.; Gulick, T.; Keller, G.; Grabielle-Madelmont, C.; Torres, M.L.; Cherif-Cheikh, R.; Paternostre, M. Self-association process of a peptide in solution: from beta-sheet filaments to large embedded nanotubes. Biophys. J., 2004, 86(4), 2484-2501. [http://dx.doi.org/10.1016/S0006-3495(04)74304-0]. [PMID: 15041685].
[125]
Yu, Z.; Xu, Q.; Dong, C.; Lee, S.S.; Gao, L.; Li, Y.; D’Ortenzio, M.; Wu, J. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. Curr. Pharm. Des., 2015, 21(29), 4342-4354. [http://dx.doi.org/10.2174/1381612821666150901104821]. [PMID: 26323419].
[126]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160. [http://dx.doi.org/10.1038/nrd1632]. [PMID: 15688077].
[127]
Allen, T.M.; Hansen, C.B.; Demenezes, D.E. Pharmacokinetics of long-circulating liposomes. Adv. Drug Deliv. Rev., 1995, 16(2-3), 267-284. [http://dx.doi.org/10.1016/0169-409X(95)00029-7].
[128]
Torchilin, V.P. Liposomes as targetable drug carriers. Crit. Rev. Ther. Drug Carrier Syst., 1985, 2(1), 65-115. [PMID: 3913530].
[129]
Das, P.K.; Murray, G.J.; Zirzow, G.C.; Brady, R.O.; Barranger, J.A. Lectin-specific targeting of beta-glucocerebrosidase to different liver cells via glycosylated liposomes. Biochem. Med., 1985, 33(1), 124-131. [http://dx.doi.org/10.1016/0006-2944(85)90135-8]. [PMID: 3994697].
[130]
Shariat, S.; Badiee, A.; Jalali, S.A.; Mansourian, M.; Yazdani, M.; Mortazavi, S.A.; Jaafari, M.R. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett., 2014, 355(1), 54-60. [http://dx.doi.org/10.1016/j.canlet.2014.09.016]. [PMID: 25224570].
[131]
Shalaev, E.Y.; Steponkus, P.L. Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. Biochim. Biophys. Acta, 1999, 1419(2), 229-247. [http://dx.doi.org/10.1016/S0005-2736(99)00068-1]. [PMID: 10407074].
[132]
Simões, S.; Moreira, J.N.; Fonseca, C.; Düzgüneş, N.; de Lima, M.C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56(7), 947-965. [http://dx.doi.org/10.1016/j.addr.2003.10.038]. [PMID: 15066754].
[133]
Fattal, E.; Couvreur, P.; Dubernet, C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev., 2004, 56(7), 931-946. [http://dx.doi.org/10.1016/j.addr.2003.10.037]. [PMID: 15066753].
[134]
Shigeta, K.; Kawakami, S.; Higuchi, Y.; Okuda, T.; Yagi, H.; Yamashita, F.; Hashida, M. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J. Control. Release, 2007, 118(2), 262-270. [http://dx.doi.org/10.1016/j.jconrel.2006.12.019]. [PMID: 17267065].
[135]
Sudimack, J.J.; Guo, W.; Tjarks, W.; Lee, R.J. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta, 2002, 1564(1), 31-37. [http://dx.doi.org/10.1016/S0005-2736(02)00399-1]. [PMID: 12100993].
[136]
Asokan, A.; Cho, M.J. Cytosolic delivery of macromolecules. II. Mechanistic studies with pH-sensitive morpholine lipids. Biochim. Biophys. Acta, 2003, 1611(1-2), 151-160. [http://dx.doi.org/10.1016/S0005-2736(03)00050-6]. [PMID: 12659956].
[137]
Kakudo, T.; Chaki, S.; Futaki, S.; Nakase, I.; Akaji, K.; Kawakami, T.; Maruyama, K.; Kamiya, H.; Harashima, H. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system. Biochemistry, 2004, 43(19), 5618-5628. [http://dx.doi.org/10.1021/bi035802w]. [PMID: 15134436].
[138]
Turk, M.J.; Reddy, J.A.; Chmielewski, J.A.; Low, P.S. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim. Biophys. Acta, 2002, 1559(1), 56-68. [http://dx.doi.org/10.1016/S0005-2736(01)00441-2]. [PMID: 11825588].
[139]
Shi, G.; Guo, W.; Stephenson, S.M.; Lee, R.J. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J. Control. Release, 2002, 80(1-3), 309-319. [http://dx.doi.org/10.1016/S0168-3659(02)00017-2]. [PMID: 11943407].
[140]
Ducat, E.; Deprez, J.; Gillet, A.; Noël, A.; Evrard, B.; Peulen, O.; Piel, G. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int. J. Pharm., 2011, 420(2), 319-332. [http://dx.doi.org/10.1016/j.ijpharm.2011.08.034]. [PMID: 21889584].
[141]
Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.; Wang, C.; Zhang, W.Q.; Zhang, X.; Zhang, Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release, 2016, 222, 56-66. [http://dx.doi.org/10.1016/j.jconrel.2015.12.006]. [PMID: 26682502].
[142]
Geisert, E.E., Jr; Del Mar, N.A.; Owens, J.L.; Holmberg, E.G. Transfecting neurons and glia in the rat using pH-sensitive immunoliposomes. Neurosci. Lett., 1995, 184(1), 40-43. [http://dx.doi.org/10.1016/0304-3940(94)11163-D]. [PMID: 7739802].
[143]
Yessine, M.A.; Leroux, J.C. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv. Drug Deliv. Rev., 2004, 56(7), 999-1021. [http://dx.doi.org/10.1016/j.addr.2003.10.039]. [PMID: 15066757].
[144]
Chen, G.; Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 1995, 373(6509), 49-52. [http://dx.doi.org/10.1038/373049a0]. [PMID: 7800038].
[145]
Rothbard, J.B.; Jessop, T.C.; Wender, P.A. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv. Drug Deliv. Rev., 2005, 57(4), 495-504. [http://dx.doi.org/10.1016/j.addr.2004.10.003]. [PMID: 15722160].
[146]
Wadia, J.S.; Stan, R.V.; Dowdy, S.F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med., 2004, 10(3), 310-315. [http://dx.doi.org/10.1038/nm996]. [PMID: 14770178].
[147]
Wadia, J.S.; Dowdy, S.F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv. Drug Deliv. Rev., 2005, 57(4), 579-596. [http://dx.doi.org/10.1016/j.addr.2004.10.005]. [PMID: 15722165].
[148]
Mayor, S.; Pagano, R.E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 603-612. [http://dx.doi.org/10.1038/nrm2216]. [PMID: 17609668].
[149]
Futaki, S.; Nakase, I.; Tadokoro, A.; Takeuchi, T.; Jones, A.T. Arginine-rich peptides and their internalization mechanisms. Biochem. Soc. Trans., 2007, 35(Pt 4), 784-787. [http://dx.doi.org/10.1042/BST0350784]. [PMID: 17635148].
[150]
Vandenbroucke, R.E.; De Smedt, S.C.; Demeester, J.; Sanders, N.N. Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes. Biochim. Biophys. Acta, 2007, 1768(3), 571-579. [http://dx.doi.org/10.1016/j.bbamem.2006.11.006]. [PMID: 17188643].
[151]
Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 2014, 8(3), 1972-1994. [http://dx.doi.org/10.1021/nn4057269]. [PMID: 24559246].
[152]
Koren, E.; Torchilin, V.P. Cell-penetrating peptides: breaking through to the other side. Trends Mol. Med., 2012, 18(7), 385-393. [http://dx.doi.org/10.1016/j.molmed.2012.04.012]. [PMID: 22682515].
[153]
Duchardt, F.; Fotin-Mleczek, M.; Schwarz, H.; Fischer, R.; Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 2007, 8(7), 848-866. [http://dx.doi.org/10.1111/j.1600-0854.2007.00572.x]. [PMID: 17587406].
[154]
Fittipaldi, A.; Ferrari, A.; Zoppé, M.; Arcangeli, C.; Pellegrini, V.; Beltram, F.; Giacca, M. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem., 2003, 278(36), 34141-34149. [http://dx.doi.org/10.1074/jbc.M303045200]. [PMID: 12773529].
[155]
Richard, J.P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L.V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem., 2005, 280(15), 15300-15306. [http://dx.doi.org/10.1074/jbc.M401604200]. [PMID: 15687490].
[156]
Chuard, N.; Fujisawa, K.; Morelli, P.; Saarbach, J.; Winssinger, N.; Metrangolo, P.; Resnati, G.; Sakai, N.; Matile, S. Activation of cell-penetrating peptides with ionpair-π interactions and fluorophiles. J. Am. Chem. Soc., 2016, 138(35), 11264-11271. [http://dx.doi.org/10.1021/jacs.6b06253]. [PMID: 27568814].
[157]
Young Kim, H.; Young Yum, S.; Jang, G.; Ahn, D.R. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci. Rep., 2015, 5, 11719. [http://dx.doi.org/10.1038/srep11719]. [PMID: 26114640].
[158]
Farrera-Sinfreu, J.; Giralt, E.; Castel, S.; Albericio, F.; Royo, M. Cell-penetrating cis-gamma-amino-l-proline-derived peptides. J. Am. Chem. Soc., 2005, 127(26), 9459-9468. [http://dx.doi.org/10.1021/ja051648k]. [PMID: 15984873].
[159]
Patel, L.N.; Zaro, J.L.; Shen, W.C. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm. Res., 2007, 24(11), 1977-1992. [http://dx.doi.org/10.1007/s11095-007-9303-7]. [PMID: 17443399].
[160]
Ezzat, K.; Andaloussi, S.E.; Zaghloul, E.M.; Lehto, T.; Lindberg, S.; Moreno, P.M.; Viola, J.R.; Magdy, T.; Abdo, R.; Guterstam, P.; Sillard, R.; Hammond, S.M.; Wood, M.J.; Arzumanov, A.A.; Gait, M.J.; Smith, C.I.; Hällbrink, M.; Langel, Ü. PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res., 2011, 39(12), 5284-5298. [http://dx.doi.org/10.1093/nar/gkr072]. [PMID: 21345932].
[161]
Mandal, D.; Nasrolahi Shirazi, A.; Parang, K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9633-9637. [http://dx.doi.org/10.1002/anie.201102572]. [PMID: 21919161].
[162]
Bodor, N.; Tóth-Sarudy, E.; Holm, T.; Pallagi, I.; Vass, E.; Buchwald, P.; Langel, U. Novel, cell-penetrating molecular transporters with flexible backbones and permanently charged side-chains. J. Pharm. Pharmacol., 2007, 59(8), 1065-1076. [http://dx.doi.org/10.1211/jpp.59.8.0003]. [PMID: 17725848].
[163]
Andaloussi, S.E.; Lehto, T.; Mäger, I.; Rosenthal-Aizman, K.; Oprea, I.I.; Simonson, O.E.; Sork, H.; Ezzat, K.; Copolovici, D.M.; Kurrikoff, K.; Viola, J.R.; Zaghloul, E.M.; Sillard, R.; Johansson, H.J.; Said Hassane, F.; Guterstam, P.; Suhorutšenko, J.; Moreno, P.M.; Oskolkov, N.; Hälldin, J.; Tedebark, U.; Metspalu, A.; Lebleu, B.; Lehtiö, J.; Smith, C.I.; Langel, U. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res., 2011, 39(9), 3972-3987. [http://dx.doi.org/10.1093/nar/gkq1299]. [PMID: 21245043].
[164]
Oskolkov, N.; Arukuusk, P.; Copolovici, D.M.; Lindberg, S.; Margus, H.; Padari, K.; Pooga, M.; Langel, U. NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int. J. Pept. Res. Ther., 2011, 17(2), 147-157. [http://dx.doi.org/10.1007/s10989-011-9252-1].
[165]
Ezzat, K.; Helmfors, H.; Tudoran, O.; Juks, C.; Lindberg, S.; Padari, K.; El-Andaloussi, S.; Pooga, M.; Langel, U. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J., 2012, 26(3), 1172-1180. [http://dx.doi.org/10.1096/fj.11-191536]. [PMID: 22138034].
[166]
Nelson, A.R.; Borland, L.; Allbritton, N.L.; Sims, C.E. Myristoyl-based transport of peptides into living cells. Biochemistry, 2007, 46(51), 14771-14781. [http://dx.doi.org/10.1021/bi701295k]. [PMID: 18044965].
[167]
Gautam, A.; Nanda, J.S.; Samuel, J.S.; Kumari, M.; Priyanka, P.; Bedi, G.; Nath, S.K.; Mittal, G.; Khatri, N.; Raghava, G.P. Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Sci. Rep., 2016, 6, 26278. [http://dx.doi.org/10.1038/srep26278]. [PMID: 27189051].
[168]
Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev., 2012, 64, 302-315. [http://dx.doi.org/10.1016/j.addr.2012.09.031]. [PMID: 17092599].
[169]
Du, A.W.; Stenzel, M.H. Drug carriers for the delivery of therapeutic peptides. Biomacromolecules, 2014, 15(4), 1097-1114. [http://dx.doi.org/10.1021/bm500169p]. [PMID: 24661025].
[170]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851. [http://dx.doi.org/10.1016/j.addr.2012.02.002]. [PMID: 22342438].
[171]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764. [http://dx.doi.org/10.1039/C3CS60273G]. [PMID: 24220322].
[172]
Javadpour, M.M.; Juban, M.M.; Lo, W.C.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; McLaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem., 1996, 39(16), 3107-3113. [http://dx.doi.org/10.1021/jm9509410]. [PMID: 8759631].
[173]
Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; Bredesen, D.E.; Pasqualini, R. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med., 1999, 5(9), 1032-1038. [http://dx.doi.org/10.1038/12469]. [PMID: 10470080].
[174]
Mai, J.C.; Mi, Z.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res., 2001, 61(21), 7709-7712. [PMID: 11691780].
[175]
Chen, W.H.; Xu, X.D.; Luo, G.F.; Jia, H.Z.; Lei, Q.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci. Rep., 2013, 3, 3468. [http://dx.doi.org/10.1038/srep03468]. [PMID: 24336626].
[176]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455. [http://dx.doi.org/10.1073/pnas.1114518108]. [PMID: 21969599].
[177]
Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light induced drug delivery into cancer cells. Biomaterials, 2011, 32(5), 1377-1386. [http://dx.doi.org/10.1016/j.biomaterials.2010.10.029]. [PMID: 21074848].
[178]
Toft, D.J.; Moyer, T.J.; Standley, S.M.; Ruff, Y.; Ugolkov, A.; Stupp, S.I.; Cryns, V.L. Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano, 2012, 6(9), 7956-7965. [http://dx.doi.org/10.1021/nn302503s]. [PMID: 22928955].
[179]
Ma, X.; Wang, X.; Zhou, M.; Fei, H. A mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv. Healthc. Mater., 2013, 2(12), 1638-1643. [http://dx.doi.org/10.1002/adhm.201300037]. [PMID: 23657942].
[180]
Qiao, Z.Y.; Hou, C.Y.; Zhang, D.; Liu, Y.; Lin, Y.X.; An, H.W.; Li, X.J.; Wang, H. Self-assembly of cytotoxic peptide conjugated poly(beta-amino ester)s for synergistic cancer chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(15), 2943-2953. [http://dx.doi.org/10.1039/C4TB02144D].
[181]
Qiao, Z.Y.; Lin, Y.X.; Lai, W.J.; Hou, C.Y.; Wang, Y.; Qiao, S.L.; Zhang, D.; Fang, Q.J.; Wang, H. A General strategy for facile synthesis and in situ screening of self-assembled polymer-peptide nanomaterials. Adv. Mater., 2016, 28(9), 1859-1867. [http://dx.doi.org/10.1002/adma.201504564]. [PMID: 26698326].
[182]
Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; Jiang, X. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater., 2015, 27(8), 1402-1407. [http://dx.doi.org/10.1002/adma.201404788]. [PMID: 25529120].
[183]
Petersen, S.; Barchanski, A.; Taylor, U.; Klein, S.; Rath, D.; Barcikowski, S. Penetratin-conjugated gold nanoparticles - design of cell-penetrating nanomarkers by femtosecond laser ablation. J. Phys. Chem. C, 2011, 115(12), 5152-5159. [http://dx.doi.org/10.1021/jp1093614].
[184]
Santra, S.; Yang, H.; Dutta, D.; Stanley, J.T.; Holloway, P.H.; Tan, W.; Moudgil, B.M.; Mericle, R.A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. (Camb.), 2004, (24), 2810-2811. [http://dx.doi.org/10.1039/b411916a]. [PMID: 15599418].
[185]
Josephson, L.; Tung, C.H.; Moore, A.; Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem., 1999, 10(2), 186-191. [http://dx.doi.org/10.1021/bc980125h]. [PMID: 10077466].
[186]
Nitin, N.; LaConte, L.E.; Zurkiya, O.; Hu, X.; Bao, G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem., 2004, 9(6), 706-712. [http://dx.doi.org/10.1007/s00775-004-0560-1]. [PMID: 15232722].
[187]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669. [http://dx.doi.org/10.1023/B:PHAM.0000041463.56768.ec]. [PMID: 15497694].
[188]
Kanazawa, T.; Taki, H.; Tanaka, K.; Takashima, Y.; Okada, H. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm. Res., 2011, 28(9), 2130-2139. [http://dx.doi.org/10.1007/s11095-011-0440-7]. [PMID: 21499835].
[189]
Glowka, E.; Sapin-Minet, A.; Leroy, P.; Lulek, J.; Maincent, P. Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles. J. Microencapsul., 2010, 27(1), 25-36. [http://dx.doi.org/10.3109/02652040902751125]. [PMID: 19229671].
[190]
Rhee, Y.S.; Sohn, M.; Woo, B.H.; Thanoo, B.C.; DeLuca, P.P.; Mansour, H.M. Sustained-release delivery of octreotide from biodegradable polymeric microspheres. AAPS PharmSciTech, 2011, 12(4), 1293-1301. [http://dx.doi.org/10.1208/s12249-011-9693-z]. [PMID: 21948321].
[191]
Ghassemi, A.H.; van Steenbergen, M.J.; Barendregt, A.; Talsma, H.; Kok, R.J.; van Nostrum, C.F.; Crommelin, D.J.; Hennink, W.E. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm. Res., 2012, 29(1), 110-120. [http://dx.doi.org/10.1007/s11095-011-0517-3]. [PMID: 21744173].
[192]
He, H.T.; Gürsoy, R.N.; Kupczyk-Subotkowska, L.; Tian, J.; Williams, T.; Siahaan, T.J. Synthesis and chemical stability of a disulfide bond in a model cyclic pentapeptide: cyclo(1,4)-Cys-Gly-Phe-Cys-Gly-OH. J. Pharm. Sci., 2006, 95(10), 2222-2234. [http://dx.doi.org/10.1002/jps.20701]. [PMID: 16883561].
[193]
Houston, M.E., Jr; Campbell, A.P.; Lix, B.; Kay, C.M.; Sykes, B.D.; Hodges, R.S. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices. Biochemistry, 1996, 35(31), 10041-10050. [http://dx.doi.org/10.1021/bi952757m]. [PMID: 8756466].
[194]
Jagasia, R.; Holub, J.M.; Bollinger, M.; Kirshenbaum, K.; Finn, M.G. Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition. J. Org. Chem., 2009, 74(8), 2964-2974. [http://dx.doi.org/10.1021/jo802097m]. [PMID: 19309103].
[195]
Aimetti, A.A.; Shoemaker, R.K.; Lin, C.C.; Anseth, K.S. On-resin peptide macrocyclization using thiol-ene click chemistry. Chem. Commun. (Camb.), 2010, 46(23), 4061-4063. [http://dx.doi.org/10.1039/c001375g]. [PMID: 20379591].
[196]
Meldal, M. ‘One bead two compound libraries’ for detecting chemical and biochemical conversions. Curr. Opin. Chem. Biol., 2004, 8(3), 238-244. [http://dx.doi.org/10.1016/j.cbpa.2004.04.007]. [PMID: 15183321].
[197]
Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul), 2012, 20(1), 19-26. [http://dx.doi.org/10.4062/biomolther.2012.20.1.019]. [PMID: 24116270].
[198]
Gründemann, C.; Thell, K.; Lengen, K.; Garcia-Käufer, M.; Huang, Y.H.; Huber, R.; Craik, D.J.; Schabbauer, G.; Gruber, C.W. Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS One, 2013, 8(6)e68016 [http://dx.doi.org/10.1371/journal.pone.0068016]. [PMID: 23840803].
[199]
Thell, K.; Hellinger, R.; Sahin, E.; Michenthaler, P.; Gold-Binder, M.; Haider, T.; Kuttke, M.; Liutkevičiūtė, Z.; Göransson, U.; Gründemann, C.; Schabbauer, G.; Gruber, C.W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 3960-3965. [http://dx.doi.org/10.1073/pnas.1519960113]. [PMID: 27035952].
[200]
Wang, S.; Blois, A.; El Rayes, T.; Liu, J.F.; Hirsch, M.S.; Gravdal, K.; Palakurthi, S.; Bielenberg, D.R.; Akslen, L.A.; Drapkin, R.; Mittal, V.; Watnick, R.S. Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci. Transl. Med., 2016, 8(329)329ra34 [http://dx.doi.org/10.1126/scitranslmed.aad5653]. [PMID: 26962158].
[201]
Gao, L.; Yu, Z.; Meng, D.; Zheng, F.; Ong, Y.S.; Miao, P.; Lee, S.S.; Wen, L. Analogue of melanotan II (MTII): A novel melanotropin with superpotent action on frog skin. Protein Pept. Lett., 2015, 22(8), 762-766. [http://dx.doi.org/10.2174/0929866522666150622101944]. [PMID: 26095376].
[202]
Park, S.; Kwon, Y.U. Facile solid-phase parallel synthesis of linear and cyclic peptoids for comparative studies of biological activity. ACS Comb. Sci., 2015, 17(3), 196-201. [http://dx.doi.org/10.1021/co5001647]. [PMID: 25602927].
[203]
Khan, S.N.; Kim, A.; Grubbs, R.H.; Kwon, Y.U. Ring-closing metathesis approaches for the solid-phase synthesis of cyclic peptoids. Org. Lett., 2011, 13(7), 1582-1585. [http://dx.doi.org/10.1021/ol200226z]. [PMID: 21384884].
[204]
Chirayil, S.; Luebke, K.J. Cyclization of peptoids by formation of boronate esters. Tetrahedron Lett., 2012, 53(7), 726-729. [http://dx.doi.org/10.1016/j.tetlet.2011.12.002]. [PMID: 22611292].
[205]
Lee, K.J.; Lim, H.S. Facile method to sequence cyclic peptides/peptoids via one-pot ring-opening/cleavage reaction. Org. Lett., 2014, 16(21), 5710-5713. [http://dx.doi.org/10.1021/ol502788e]. [PMID: 25310875].
[206]
Lee, J.H.; Meyer, A.M.; Lim, H.S. A simple strategy for the construction of combinatorial cyclic peptoid libraries. Chem. Commun. (Camb.), 2010, 46(45), 8615-8617. [http://dx.doi.org/10.1039/c0cc03272g]. [PMID: 20890503].
[207]
Olsen, C.A.; Montero, A.; Leman, L.J.; Ghadiri, M.R. Macrocyclic peptoid-peptide hybrids as inhibitors of class I histone deacetylases. ACS Med. Chem. Lett., 2012, 3(9), 749-753. [http://dx.doi.org/10.1021/ml300162r]. [PMID: 24900543].
[208]
Oh, M.; Lee, J.H.; Moon, H.; Hyun, Y.J.; Lim, H.S. A chemical inhibitor of the Skp2/p300 interaction that promotes p53-mediated apoptosis. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 602-606. [http://dx.doi.org/10.1002/anie.201508716]. [PMID: 26593157].
[209]
Laursen, J.S.; Harris, P.; Fristrup, P.; Olsen, C.A. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds. Nat. Commun., 2015, 6, 7013. [http://dx.doi.org/10.1038/ncomms8013]. [PMID: 25943784].
[210]
Lee, K.J.; Lee, W.S.; Yun, H.; Hyun, Y.J.; Seo, C.D.; Lee, C.W.; Lim, H.S. Oligomers of N-substituted β(2)-homoalanines: Peptoids with backbone chirality. Org. Lett., 2016, 18(15), 3678-3681. [http://dx.doi.org/10.1021/acs.orglett.6b01726]. [PMID: 27404658].
[211]
Arkin, M.R.; Tang, Y.; Wells, J.A. Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chem. Biol., 2014, 21(9), 1102-1114. [http://dx.doi.org/10.1016/j.chembiol.2014.09.001]. [PMID: 25237857].
[212]
Kariolis, M.S.; Kapur, S.; Cochran, J.R. Beyond antibodies: Using biological principles to guide the development of next-generation protein therapeutics. Curr. Opin. Biotechnol., 2013, 24(6), 1072-1077. [http://dx.doi.org/10.1016/j.copbio.2013.03.017]. [PMID: 23587963].
[213]
Herce, H.D.; Deng, W.; Helma, J.; Leonhardt, H.; Cardoso, M.C. Visualization and targeted disruption of protein interactions in living cells. Nat. Commun., 2013, 4, 2660-2667. [http://dx.doi.org/10.1038/ncomms3660]. [PMID: 24154492].
[214]
Kaffy, J.; Brinet, D.; Soulier, J.L.; Correia, I.; Tonali, N.; Fera, K.F.; Iacone, Y.; Hoffmann, A.R.; Khemtémourian, L.; Crousse, B.; Taylor, M.; Allsop, D.; Taverna, M.; Lequin, O.; Ongeri, S. Designed glycopeptidomimetics disrupt protein-protein interactions mediating amyloid β-peptide aggregation and restore neuroblastoma cell viability. J. Med. Chem., 2016, 59(5), 2025-2040. [http://dx.doi.org/10.1021/acs.jmedchem.5b01629]. [PMID: 26789783].
[215]
Checco, J.W.; Kreitler, D.F.; Thomas, N.C.; Belair, D.G.; Rettko, N.J.; Murphy, W.L.; Forest, K.T.; Gellman, S.H. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. USA, 2015, 112(15), 4552-4557. [http://dx.doi.org/10.1073/pnas.1420380112]. [PMID: 25825775].
[216]
Otvos, L., Jr; Surmacz, E. Targeting the leptin receptor:A potential new mode of treatment for breast cancer. Expert Rev. Anticancer Ther., 2011, 11(8), 1147-1150. [http://dx.doi.org/10.1586/era.11.109]. [PMID: 21916566].
[217]
Meydan, C.; Otu, H.H.; Sezerman, O.U. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining. BMC Bioinformatics, 2013, 14(Suppl. 2), S13. [http://dx.doi.org/10.1186/1471-2105-14-S2-S13]. [PMID: 23368521].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy