Abstract
Cerebral ischemia induces many degenerative cellular reactions, including the release of excitatory amino acids, the formation of oxygen free radicals, Ca2+ overload, the activation of several cellular enzyme systems such as Ca2+ dependent proteases, and the initiation of genomic responses that can affect the tissue outside the area of reduced blood flow. Furthermore, increasing evidence indicates that apoptosis contributes to the death of brain cells following cerebral ischemia. Several studies have shown that cerebral ischemia alters the expression of genes, some of which may play protective or harmful roles. Although many genes have the potential to treat cerebral ischemia, target genes or their translated products are often difficult to express, if at all, in brain cells. However, adenovirus-mediated gene transfer can overcome this disadvantage. To date, many treatment strategies have been developed for cerebral ischemia using target genes such as neuronal apoptosis inhibitory protein (NAIP), glial cell line-derived neurotrophic factor (GDNF), sensitive to apoptosis gene (SAG), 150-kDa oxygen-regulated protein (ORP150), etc. Moreover, new vectors and gene delivery systems are constantly being invented although there is no perfect vector to date. Gene therapy could constitute a powerful strategy to treat cerebral ischemia in the near future.
Keywords: cerebral ischemia, cerebral infarction, gene therapy, adenovirus vector
Current Gene Therapy
Title: Recent Advances in Adenovirus-mediated Gene Therapy for Cerebral Ischemia
Volume: 3 Issue: 1
Author(s): Makoto Masumura and Ryuji Hata
Affiliation:
Keywords: cerebral ischemia, cerebral infarction, gene therapy, adenovirus vector
Abstract: Cerebral ischemia induces many degenerative cellular reactions, including the release of excitatory amino acids, the formation of oxygen free radicals, Ca2+ overload, the activation of several cellular enzyme systems such as Ca2+ dependent proteases, and the initiation of genomic responses that can affect the tissue outside the area of reduced blood flow. Furthermore, increasing evidence indicates that apoptosis contributes to the death of brain cells following cerebral ischemia. Several studies have shown that cerebral ischemia alters the expression of genes, some of which may play protective or harmful roles. Although many genes have the potential to treat cerebral ischemia, target genes or their translated products are often difficult to express, if at all, in brain cells. However, adenovirus-mediated gene transfer can overcome this disadvantage. To date, many treatment strategies have been developed for cerebral ischemia using target genes such as neuronal apoptosis inhibitory protein (NAIP), glial cell line-derived neurotrophic factor (GDNF), sensitive to apoptosis gene (SAG), 150-kDa oxygen-regulated protein (ORP150), etc. Moreover, new vectors and gene delivery systems are constantly being invented although there is no perfect vector to date. Gene therapy could constitute a powerful strategy to treat cerebral ischemia in the near future.
Export Options
About this article
Cite this article as:
Masumura Makoto and Hata Ryuji, Recent Advances in Adenovirus-mediated Gene Therapy for Cerebral Ischemia, Current Gene Therapy 2003; 3 (1) . https://dx.doi.org/10.2174/1566523033347516
DOI https://dx.doi.org/10.2174/1566523033347516 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
PREFACE
Anti-Cancer Agents in Medicinal Chemistry Radionuclide Liver Cancer Therapies: From Concept to Current Clinical Status
Anti-Cancer Agents in Medicinal Chemistry Liquid Crystal Nanodispersions Enable the Cutaneous Delivery of Photosensitizer for Topical PDT: Fluorescence Microscopy Study of Skin Penetration
Current Nanoscience Electrochemical Cell-based Biosensors for Biomedical Applications
Current Topics in Medicinal Chemistry Dietary Manipulation of Precursor Polyunsaturated Fatty Acids Modulates Eicosanoid and Endocannabinoid Synthesis: A Potential Tool to Control Tumor Development
Current Nutrition & Food Science Advances in Gene Therapy for Bladder Cancer
Current Gene Therapy Analytical and Pharmacological Aspects of Therapeutic Drug Monitoring of mTOR Inhibitors
Current Drug Metabolism The Epithelial-Mesenchymal Transition and Cancer Stem Cells: Functional and Mechanistic Links
Current Pharmaceutical Design Benzamides as Melanotropic Carriers for Radioisotopes, Metals, Cytotoxic Agents and as Enzyme Inhibitors
Current Medicinal Chemistry Overview of the Formulations and Analogs in the Taxanes' Story
Current Medicinal Chemistry Taking Cell Culture in Drug Discovery to the Third Dimension - A Patent Review
Recent Patents on Biomedical Engineering (Discontinued) Compounds from Wild Mushrooms with Antitumor Potential
Anti-Cancer Agents in Medicinal Chemistry Flavopiridol, the First Cyclin-Dependent Kinase Inhibitor: Recent Advances in Combination Chemotherapy
Mini-Reviews in Medicinal Chemistry Valproic Acid As Anti-Cancer Drug
Current Pharmaceutical Design A Review on Poly (ADP-ribose) Polymerase (PARP) Inhibitors and Synthetic Methodologies
Current Medicinal Chemistry Future Prospect of RNA Interference for Cancer Therapies
Current Drug Targets 2D QSAR and Virtual Screening based on Pyridopyrimidine Analogs of Epidermal Growth Factor Receptor Tyrosine Kinase
Current Computer-Aided Drug Design Role of Histone Deacetylases (HDACs) in Epilepsy and Epileptogenesis
Current Pharmaceutical Design Isoliquiritigenin (ISL) and its Formulations: Potential Antitumor Agents
Current Medicinal Chemistry Tumour Gene Therapy Monitoring Using Magnetic Resonance Imaging and Spectroscopy
Current Gene Therapy