Research Article

互补色谱-质谱联用分析泌尿生殖道肿瘤的代谢异质性

卷 26, 期 1, 2019

页: [216 - 231] 页: 16

弟呕挨: 10.2174/0929867324666171006150326

open access plus

摘要

背景:在泌尿生殖道癌症研究方面,预计2012年美国将有340650例新病例和58360例因生殖系统癌症死亡,约141140例新病例和29330例因泌尿系统死亡。现有诊断试验的主要缺点是特异性低、成本高、侵入性强。 目的:本试验研究的主要目的是测定和比较泌尿生殖道癌症患者和健康对照者的尿代谢指印。 方法:采用LC-TOF/MS和GCQQ/MS对30例泌尿生殖系统(膀胱(n=10)、肾脏(n=10)、前列腺(n=10))癌患者和30例健康志愿者的尿液代谢情况进行比较分析,采用U-Mann-Whitney检验或Student t t t检验进行数据分析。主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)。 结果:与健康组相比,膀胱癌、前列腺癌和肾癌中的33、43和22种化合物具有统计学意义。 结论:鉴定了嘌呤、糖、氨基酸、核苷、有机酸等在嘌呤代谢、三羧酸循环、氨基酸代谢或肠道微生物群代谢中起作用的多种化合物。研究发现,三种癌症中只有两种常见的代谢产物,即咖啡酸和乳酸。

关键词: LC-MS,GC-MS,代谢组学,膀胱癌,肾癌,前列腺癌。

[1]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin., 2012, 62(1), 10-29.
[2]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[3]
[4]
Wu, H.; Liu, T.; Ma, C.; Xue, R.; Deng, C.; Zeng, H.; Shen, X. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem., 2011, 401(2), 635-646.
[5]
Alberice, J.V.; Amaral, A.F.; Armitage, E.G.; Lorente, J.A.; Algaba, F.; Carrilho, E.; Márquez, M.; García, A.; Malats, N.; Barbas, C. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J. Chromatogr. A, 2013, 1318, 163-170.
[6]
Herman, M.P.; Svatek, R.S.; Lotan, Y.; Karakiewizc, P.I.; Shariat, S.F. Urine-based biomarkers for the early detection and surveillance of non-muscle invasive bladder cancer. Minerva Urol. Nefrol., 2008, 60(4), 217-235.
[7]
Viswanath, S.; Zelhof, B.; Ho, E.; Sethia, K.; Mills, R. Is routine urine cytology useful in the haematuria clinic? Ann. R. Coll. Surg. Engl., 2008, 90(2), 153-155.
[8]
Shariat, S.F.; Karam, J.A.; Lotan, Y.; Karakiewizc, P.I. Critical evaluation of urinary markers for bladder cancer detection and monitoring. Rev. Urol., 2008, 10(2), 120-135.
[9]
Guo, A. Wang, X.; Gao, L.; Shi, J.; Sun, C.; Wan. Z. In Can Urol Assoc J: Canada, 2014, 8, E347-E352.
[10]
Landman, J.; Chang, Y.; Kavaler, E.; Droller, M.J.; Liu, B.C. Sensitivity and specificity of NMP-22, telomerase, and BTA in the detection of human bladder cancer. Urology, 1998, 52(3), 398-402.
[11]
Jain, P.; Surdas, R.; Aga, P.; Jain, M.; Kapoor, R.; Srivastava, A.; Mandhani, A. Renal cell carcinoma: Impact of mode of detection on its pathological characteristics. Indian J. Urol., 2009, 25(4), 479-482.
[12]
Morrissey, J.J.; London, A.N.; Luo, J.; Kharasch, E.D. Urinary biomarkers for the early diagnosis of kidney cancer. Mayo Clin. Proc., 2010, 85(5), 413-421.
[13]
Lindon, J.; Nicholson, J.; Holmes, E.; Everett, J. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson., 2000, 12(5), 289-320.
[14]
Danielsson, R.; Allard, E.; Sjoberg, P.; Bergquist, J. Exploring liquid chromatography-mass spectrometry fingerprints of urine samples from patients with prostate or urinary bladder cancer. Chemom. Intell. Lab. Syst., 2011, 108(1), 33-48.
[15]
Markuszewski, M.J.; Struck, W.; Waszczuk-Jankowska, M.; Kaliszan, R. Metabolomic approach for determination of urinary nucleosides as potential tumor markers using electromigration techniques. Electrophoresis, 2010, 31(14), 2300-2310.
[16]
Catchpole, G.; Platzer, A.; Weikert, C.; Kempkensteffen, C.; Johannsen, M.; Krause, H.; Jung, K.; Miller, K.; Willmitzer, L.; Selbig, J.; Weikert, S. Metabolic profiling reveals key metabolic features of renal cell carcinoma. J. Cell. Mol. Med., 2011, 15(1), 109-118.
[17]
Pasikanti, K.K.; Esuvaranathan, K.; Hong, Y.; Ho, P.C.; Mahendran, R.; Raman Nee Mani, L.; Chiong, E.; Chan, E.C. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Proteome Res., 2013, 12(9), 3865-3873.
[18]
Perroud, B.; Lee, J.; Valkova, N.; Dhirapong, A.; Lin, P.Y.; Fiehn, O.; Kültz, D.; Weiss, R.H. Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol. Cancer, 2006, 5, 64.
[19]
Struck-Lewicka, W.; Kordalewska, M.; Bujak, R.; Yumba Mpanga, A.; Markuszewski, M.; Jacyna, J.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J. Pharm. Biomed. Anal., 2015, 111, 351-361.
[20]
Godzien, J.; Ciborowski, M.; Angulo, S.; Barbas, C. From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis, 2013, 34(19), 2812-2826.
[21]
Naz, S.; García, A.; Barbas, C. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal. Chem., 2013, 85(22), 10941-10948.
[22]
Wittmann, B.M.; Stirdivant, S.M.; Mitchell, M.W.; Wulff, J.E.; McDunn, J.E.; Li, Z.; Dennis-Barrie, A.; Neri, B.P.; Milburn, M.V.; Lotan, Y.; Wolfert, R.L. Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS One, 2014, 9(12), e115870.
[23]
Ragan, T.J.; Bailey, A.P.; Gould, A.P.; Driscoll, P.C. Volume determination with two standards allows absolute quantification and improved chemometric analysis of metabolites by NMR from submicroliter samples. Anal. Chem., 2013, 85(24), 12046-12054.
[24]
Feng, B.; Zheng, M.H.; Zheng, Y.F.; Lu, A.G.; Li, J.W.; Wang, M.L.; Ma, J.J.; Xu, G.W.; Liu, B.Y.; Zhu, Z.G. Normal and modified urinary nucleosides represent novel biomarkers for colorectal cancer diagnosis and surgery monitoring. J. Gastroenterol. Hepatol., 2005, 20(12), 1913-1919.
[25]
Kim, K.R.; La, S.; Kim, A.; Kim, J.H.; Liebich, H.M. Capillary electrophoretic profiling and pattern recognition analysis of urinary nucleosides from uterine myoma and cervical cancer patients. J. Chromatogr. B Biomed. Sci. Appl., 2001, 754(1), 97-106.
[26]
Peng, J.; Chen, Y.T.; Chen, C.L.; Li, L. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem., 2014, 86(13), 6540-6547.
[27]
Gao, H.; Dong, B.; Jia, J.; Zhu, H.; Diao, C.; Yan, Z.; Huang, Y.; Li, X. Application of ex vivo (1)H NMR metabonomics to the characterization and possible detection of renal cell carcinoma metastases. J. Cancer Res. Clin. Oncol., 2012, 138(5), 753-761.
[28]
Putluri, N.; Shojaie, A.; Vasu, V.T.; Vareed, S.K.; Nalluri, S.; Putluri, V.; Thangjam, G.S.; Panzitt, K.; Tallman, C.T.; Butler, C.; Sana, T.R.; Fischer, S.M.; Sica, G.; Brat, D.J.; Shi, H.; Palapattu, G.S.; Lotan, Y.; Weizer, A.Z.; Terris, M.K.; Shariat, S.F.; Michailidis, G.; Sreekumar, A. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res., 2011, 71(24), 7376-7386.
[29]
Monteiro, M.S.; Carvalho, M.; Bastos, M.; Pinho, P.G. Biomarkers in renal cell carcinoma: a metabolomics approach. Metabolomics, 2014, 10(6), 1210-1222.
[30]
Chan, E.C.; Koh, P.K.; Mal, M.; Cheah, P.Y.; Eu, K.W.; Backshall, A.; Cavill, R.; Nicholson, J.K.; Keun, H.C. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res., 2009, 8(1), 352-361.
[31]
Pasikanti, K.K.; Norasmara, J.; Cai, S.; Mahendran, R.; Esuvaranathan, K.; Ho, P.C.; Chan, E.C. Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry. Anal. Bioanal. Chem., 2010, 398(3), 1285-1293.
[32]
Kim, K. Taylor, S.L.; Ganti, S.; Guo, L.; Osier, M.V.; Weiss. Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. 2011. Vol. 15, 293-303.
[33]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[34]
Zhang, T.; Wu, X.; Ke, C.; Yin, M.; Li, Z.; Fan, L.; Zhang, W.; Zhang, H.; Zhao, F.; Zhou, X.; Lou, G.; Li, K. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J. Proteome Res., 2013, 12(1), 505-512.
[35]
Mondul, A.M.; Moore, S.C.; Weinstein, S.J.; Karoly, E.D.; Sampson, J.N.; Albanes, D. Metabolomic analysis of prostate cancer risk in a prospective cohort: The alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int. J. Cancer, 2015, 137(9), 2124-2132.
[36]
Dettmer, K.; Vogl, F.C.; Ritter, A.P.; Zhu, W.; Nürnberger, N.; Kreutz, M.; Oefner, P.J.; Gronwald, W.; Gottfried, E. Distinct metabolic differences between various human cancer and primary cells. Electrophoresis, 2013, 34(19), 2836-2847.
[37]
Li, P.; Tao, J.; Wei, D.; Yang, X.; Lu, Z.; Deng, X.; Cheng, Y.; Gu, J.; Yang, X.; Wang, Z.; Lu, Q.; Wang, J.; Yin, C. Serum metabolomic analysis of human upper urinary tract urothelial carcinoma. Tumour Biol., 2015, 36(10), 7531-7537.
[38]
Kaplan, K.; Liu, X.; Fu, Y.; Lin, H.; Meadows, G.; Siems, W.; Hill, H. Metabolic differences among melanoma and two prostate cancer cell lines by electrospray ion mobility mass spectrometry. Int. J. Ion Mobil. Spectrom., 2011, 14(4), 151-158.

© 2025 Bentham Science Publishers | Privacy Policy