Abstract
Background: To tackle the issue of deteriorative carbon emission and develop renewable and clean energy, novel materials instead of traditional industrial products are highly demanded. During the past decades, a large amount of non-metal nanomaterials such as carbon nanotubes (CNTs), graphene, and boron (carbon) nitride have been employed as promising candidates. Among them, boron nitride (BN) and its derivative, boron carbon nitride (BCN) nanomaterial has proven to be prominent in the fields of waste water cleaning, hydrogen storage, energy conversion and storage. Analogs to but different from either carbon allotropes or BN, BCN nanomaterial is found between insulator and semiconductor with tunable electronic structure (band gaps: 0-5 eV) and the ternary BxCyNz system with different bonding configurations could be further tailored by adjusting the elemental compositions. In addition, the B, N co-doping provides polarization in the carbon network owing to the electronegativity diversity of B (2.05), N (3.04) and C (2.55), thus regulating the magnetic, optic, and electrochemical properties of BCN. Recently, two dimensional (2D) BCN nanosheets have placed values on lithium-ion batteries, oxygen reduction reaction (ORR), hydrogen evolutions (HER) and supercapacitors, which rival those of other 2D nanomaterials. Therefore, it is of great importance to introduce the synthesis and broaden the prospective versatility of BCN material in the energy applications.
Conclusion: Hence this review aims to introduce the structure properties, synthesis and energy applications of BCN nanomaterials.
Keywords: BCN nanomaterials, energy applications, electronegativity, ORR, supercapacitors, structure properties.
Graphical Abstract