摘要
背景:配体亲和力计算是计算医学化学的一个开放性问题。计算预测亲和力的能力在药物开发的早期阶段具有有益的影响,因为它允许建立一个数学模型来评估蛋白质配体和相互作用。由于具有结构和结合的信息,机器学习方法已经被应用于产生具有良好预测能力的计分函数。 目的:我们的目标是回顾近年来机器学习方法在预测配体亲和力的应用。 方法:将我们的研究重点放在计算方法的应用上,以预测蛋白质靶点的结合亲和性。此外,我们还描述了用于实验结合常数和蛋白质结构的主要可用数据库。此外,我们解释了最成功的方法来评估得分函数的预测能力。 结果:结构信息与配体结合亲和力的结合,可以为特定的生物系统生成计分函数。通过回归分析,该数据可作为基础,生成数学模型来预测配体的亲和力,如抑制常数、离解常数和结合能。 结论:实验生物物理技术能够测定12万大分子的结构。考虑到绑定关联信息的进化,我们可能会说,我们有一个很有前景的开发计分函数的方案,利用机器学习技术。这一领域最近的发展表明,与其他方法相比,在生物系统的基础上建立得分函数显示出优越的预测性能。
关键词: 机器学习,药物化学,结合亲和力,回归,药物,酶,结扎亲和力。
Current Medicinal Chemistry
Title:Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity
Volume: 24 Issue: 23
关键词: 机器学习,药物化学,结合亲和力,回归,药物,酶,结扎亲和力。
摘要: Background: Calculation of ligand-binding affinity is an open problem in computational medicinal chemistry. The ability to computationally predict affinities has a beneficial impact in the early stages of drug development, since it allows a mathematical model to assess protein-ligand interactions. Due to the availability of structural and binding information, machine learning methods have been applied to generate scoring functions with good predictive power.
Objective: Our goal here is to review recent developments in the application of machine learning methods to predict ligand-binding affinity. Method: We focus our review on the application of computational methods to predict binding affinity for protein targets. In addition, we also describe the major available databases for experimental binding constants and protein structures. Furthermore, we explain the most successful methods to evaluate the predictive power of scoring functions. Results: Association of structural information with ligand-binding affinity makes it possible to generate scoring functions targeted to a specific biological system. Through regression analysis, this data can be used as a base to generate mathematical models to predict ligandbinding affinities, such as inhibition constant, dissociation constant and binding energy. Conclusion: Experimental biophysical techniques were able to determine the structures of over 120,000 macromolecules. Considering also the evolution of binding affinity information, we may say that we have a promising scenario for development of scoring functions, making use of machine learning techniques. Recent developments in this area indicate that building scoring functions targeted to the biological systems of interest shows superior predictive performance, when compared with other approaches.Export Options
About this article
Cite this article as:
Supervised Machine Learning Methods Applied to Predict Ligand- Binding Affinity, Current Medicinal Chemistry 2017; 24 (23) . https://dx.doi.org/10.2174/0929867324666170623092503
DOI https://dx.doi.org/10.2174/0929867324666170623092503 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements