Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Structural Characterization of Amyloid β17-42 Dimer by Potential of Mean Force Analysis: Insights from Molecular Dynamics Simulations

Author(s): Mary Dutta, Rajkalyan Chutia and Venkata Satish Kumar Mattaparthi*

Volume 24, Issue 7, 2017

Page: [650 - 660] Pages: 11

DOI: 10.2174/0929866524666170621095702

Price: $65

Abstract

Background: Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear.

Objective: In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer’s disease was evaluated in terms of potential of mean force.

Methods: The Aβ17-42 dimer was constructed using PatchDock server. We have used molecular dynamics (MD) simulation with the umbrella sampling methodology to compute the Potential of Mean Force for the dimerization of Aβ17-42. The global minima structure at the minimum distance of separation was isolated from the calculated free energy profile and the interactions involved in the formation of the dimer structure were examined. Protein-protein interfaces and the residueresidue interactions vital for generation of the dimer complexes were also evaluated.

Results: The simulation results elucidated the interaction between the monomeric units to be governed primarily by the hydrophobic and hydrogen bonds. The resultant Aβ17-42 dimer was found to have an increased β-strands propensity at the hydrophobic regions encompassing the CHC region. Furthermore, specific hydrophobic residues were found to play a vital role in the formation of the dimer complex.

Conclusion: From the results we may therefore conclude hydrophobic region encompassing the CHC region to be crucial in dimerization process. The findings from this study provide detailed information for the complex process of early events of Aβ aggregation.

Keywords: Potential of mean force, dimerization, amyloid, protein aggregation, Alzheimer’s disease, hydrophobic region.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy