Abstract
Background: Rheumatoid arthritis (RA) is an immune mediated joint-based chronic inflammatory disorder recognized by joint inflammation, destruction, pain and remission. Currently, numerous pharmacotherapeutic strategies have gained immense popularity in RA therapy and improving the patient life.
Methods: Besides, it exhibits numerous drawbacks such as requirement of high dose of drugs, unavoidable adverse effects and diseases remission. Thus, use of currently available pharmacotherapeutics employing conventional formulations can only provide therapeutic effects to a certain extent.
Results: Recent advancements in nanotechnology-based lipidic vesicular nanocarriers have led provided improved efficacy and safety for the anti-rheumatic drugs. These include liposomes, stealth liposomes, ethosomes, transfersomes, etc., which have shown their potential to improve the therapeutic efficacy of antirheumatic drugs with lesser toxicity. Although the results of animal models for use of lipid vesicular nanocarriers for drug targeting in RA have been found to be highly promising, but lack of sufficient data in a clinical setup are still evident to demonstrate their practical utility in patient populations. In this regard, considerable research studies are required for evaluating the efficacy and safety of the aforementioned nanocarriers in RA through clinical studies.
Conclusion: The present review, therefore, covers the brief pathophysiology of RA, current medication and their challenges in RA therapy. Besides, an extensive account on recent advancements in novel lipid vesicular nanocarriers in RA therapy has also been addressed with special emphasis on the patent literature too.
Keywords: Immune disorders, rheumatoid arthritis, liposomes, ethosomes, transferosomes, high permeable vesicles.
Graphical Abstract