Abstract
The aim of the study was an assessment of the antioxidant, antifungal and cytotoxic potentials of L. betulinus and T. hirsuta mycelia extracts and the effect of selenium on these activities. Extracts of L. betulinus were twice as efficient in DPPH• scavenging as those of T. hirsuta. The phenol content in Se-enriched L. betulinus extracts was higher than in non-enriched extracts, in contrast to the effect of Se-enrichment on T. hirsuta extracts, and a direct correlation between the amount and DPPH• scavenging effect was observed. Ethanol extracts exhibited fungistatic but not fungicidal activity against a range of micromycetes, and mycelium enrichment with selenium inhibited this effect. Although the extracts showed low cytotoxic activity against HeLa and LS174 cells, T. hirsuta extracts, especially those enriched with selenium, had better potential. L. betulinuss extracts showed better antioxidant and antifungal activity than T. hirsuta extracts which were more active cytotoxic agents. The presence of selenium stimulated antioxidant and cytotoxic, and inhibited antifungal activity in L. betulinus, while in T. hirsuta its effect was slight.
Keywords: Biological activities, Lenzites betulinus, Trametes hirsuta, Mycelium extract, Selenium.
Current Pharmaceutical Biotechnology
Title:Effect of Selenium Enrichment of Lenzites betulinus and Trametes hirsuta Mycelia on Antioxidant, Antifungal and Cytostatics Potential
Volume: 16 Issue: 10
Author(s): Ivan N Milovanovic, Tatjana P Stanojkovic, Mirjana M Stajic, Ilija D Brceskic, Aleksandar Z Knezevic, Jasmina Lj Cilerdzic and Jelena B Vukojevic
Affiliation:
Keywords: Biological activities, Lenzites betulinus, Trametes hirsuta, Mycelium extract, Selenium.
Abstract: The aim of the study was an assessment of the antioxidant, antifungal and cytotoxic potentials of L. betulinus and T. hirsuta mycelia extracts and the effect of selenium on these activities. Extracts of L. betulinus were twice as efficient in DPPH• scavenging as those of T. hirsuta. The phenol content in Se-enriched L. betulinus extracts was higher than in non-enriched extracts, in contrast to the effect of Se-enrichment on T. hirsuta extracts, and a direct correlation between the amount and DPPH• scavenging effect was observed. Ethanol extracts exhibited fungistatic but not fungicidal activity against a range of micromycetes, and mycelium enrichment with selenium inhibited this effect. Although the extracts showed low cytotoxic activity against HeLa and LS174 cells, T. hirsuta extracts, especially those enriched with selenium, had better potential. L. betulinuss extracts showed better antioxidant and antifungal activity than T. hirsuta extracts which were more active cytotoxic agents. The presence of selenium stimulated antioxidant and cytotoxic, and inhibited antifungal activity in L. betulinus, while in T. hirsuta its effect was slight.
Export Options
About this article
Cite this article as:
Milovanovic N Ivan, Stanojkovic P Tatjana, Stajic M Mirjana, Brceskic D Ilija, Knezevic Z Aleksandar, Cilerdzic Lj Jasmina and Vukojevic B Jelena, Effect of Selenium Enrichment of Lenzites betulinus and Trametes hirsuta Mycelia on Antioxidant, Antifungal and Cytostatics Potential, Current Pharmaceutical Biotechnology 2015; 16 (10) . https://dx.doi.org/10.2174/1389201016666150618152531
DOI https://dx.doi.org/10.2174/1389201016666150618152531 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Molecular and Cellular Activities of Vitamin E Analogues
Mini-Reviews in Medicinal Chemistry Cytokines as Novel Therapeutic Agents for Neuroinflammatory Disorders: A Role for Interferon-β in the Treatment of Multiple Sclerosis
Current Medicinal Chemistry - Central Nervous System Agents Alternatives to Conventional Vaccines - Mediators of Innate Immunity
Current Drug Targets Lipid-Based Nanoparticulate Systems for the Delivery of Anti-Cancer Drug Cocktails: Implications on Pharmacokinetics and Drug Toxicities
Current Drug Metabolism Potential Therapeutic Approaches for the Treatment of Acute Myeloid Leukemia with AML1-ETO Translocation
Current Cancer Drug Targets Targeting Cancer Cells by an Oxidant-Based Therapy
Current Molecular Pharmacology Development of Lymphatic Vessels: Tumour Lymphangiogenesis and Lymphatic Invasion
Current Medicinal Chemistry Multifunctional Anti-Cancer Nano-Platforms are Moving to Clinical Trials
Current Drug Metabolism Role of Chemokines and Their Receptors in Cancer
Current Pharmaceutical Design Leukocyte P2 Receptors: A Novel Target for Anti-inflammatory and Antitumor Therapy
Current Drug Targets - Cardiovascular & Hematological Disorders An Overview of Naturally Occurring Histone Deacetylase Inhibitors
Current Topics in Medicinal Chemistry Inhibition of Apoptosis in Pediatric Cancer by Survivin
Current Pediatric Reviews Targeted Therapy for Advanced Renal Cell Cancer: Cytokines and Beyond
Current Pharmaceutical Design Pyridine Based Antitumour Compounds Acting at the Colchicine Site
Current Medicinal Chemistry Zebrafish As a Genetic Model in Pre-Clinical Drug Testing and Screening
Current Medicinal Chemistry Naturally Occurring NF-κB Inhibitors
Mini-Reviews in Medicinal Chemistry A Comprehensive Review on Perfusion Method Development for Bone Marrow Collection and Stem Cell Transplantation
Current Stem Cell Research & Therapy De Novo Malignancies After Organ Transplantation: Focus on Viral Infections
Current Molecular Medicine Bladder Cancer Stem Cells
Current Stem Cell Research & Therapy Survivin: Role in Normal Cells and in Pathological Conditions
Current Cancer Drug Targets