Abstract
In this review, we discuss a number of computational methods that have been developed or adapted for molecule classification and virtual screening (VS) of compound databases. In particular, we focus on approaches that are complementary to high-throughput screening (HTS). The discussion is limited to VS methods that operate at the small molecular level, which is often called ligand-based VS (LBVS), and does not take into account docking algorithms or other structure-based screening tools. We describe areas that greatly benefit from combining virtual and biological screening and discuss computational methods that are most suitable to contribute to the integration of screening technologies. Relevant approaches range from established methods such as clustering or similarity searching to techniques that have only recently been introduced for LBVS applications such as statistical methods or support vector machines. Finally, we discuss a number of representative applications at the interface between VS and HTS.
Keywords: molecular similarity, ligand-based methods, compound classification, activity prediction, data analysis