Abstract
Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclindependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI- 779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.
Keywords: mTOR, leukemia, phosphatidylinositol 3' kinase, AKT, CCI-779, RAD001, AP23573
Current Molecular Medicine
Title: Mammalian Target of Rapamycin as a Therapeutic Target in Leukemia
Volume: 5 Issue: 7
Author(s): Francis J. Giles and Maher Albitar
Affiliation:
Keywords: mTOR, leukemia, phosphatidylinositol 3' kinase, AKT, CCI-779, RAD001, AP23573
Abstract: Reflecting its critical role in integrating cell growth and division with the cellular nutritional environment, the mammalian target of rapamycin *(mTOR) is a highly conserved downstream effector of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B) signaling pathway. mTOR activates both the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic initiation factor 4E-binding protein-1. As a consequence of inhibiting its downstream messengers, mTOR inhibitors prevent cyclindependent kinase (CDK) activation, inhibit retinoblastoma protein phosphorylation, and accelerate the turnover of cyclin D1, leading to a deficiency of active CDK4/cyclin D1 complexes, all of which may help cause GI phase arrest. Constitutive activation of the PI3K/Akt kinases occur in human leukemias. FLT3, VEGF, and BCR-ABL mediate their activities via mTOR. New rapamycin analogs including CCI- 779, RAD001, and AP23573, are entering clinical studies for patients with hematologic malignancies.
Export Options
About this article
Cite this article as:
Giles J. Francis and Albitar Maher, Mammalian Target of Rapamycin as a Therapeutic Target in Leukemia, Current Molecular Medicine 2005; 5 (7) . https://dx.doi.org/10.2174/156652405774641034
DOI https://dx.doi.org/10.2174/156652405774641034 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
The Autism Candidate Gene Neurobeachin Encodes a Scaffolding Protein Implicated in Membrane Trafficking and Signaling
Current Molecular Medicine N6-Isopentenyladenosine and its Analogue N6-Benzyladenosine Induce Cell Cycle Arrest and Apoptosis in Bladder Carcinoma T24 Cells
Anti-Cancer Agents in Medicinal Chemistry Peroxisome Proliferator-Activated Receptor-γ in Vascular Biology
Cardiovascular & Hematological Disorders-Drug Targets Apoptosis: Its Functions and Control in the Ocular Lens
Current Molecular Medicine Targeted Gene Therapy for Ovarian Cancer
Current Gene Therapy iNOS: A Potential Therapeutic Target for Malignant Glioma
Current Molecular Medicine Gene Therapy Approaches for the Selective Killing of Cancer Cells
Current Pharmaceutical Design Targeting MDM2-p53 Interaction for Cancer Therapy: Are We There Yet?
Current Medicinal Chemistry Neuroprotection by Natural Polyphenols: Molecular Mechanisms
Central Nervous System Agents in Medicinal Chemistry Feature Classification and Analysis of Lung Cancer Related Genes through Gene Ontology and KEGG Pathways
Current Bioinformatics New Thermoresponsive Eyedrop Formulation Containing Ibuprofen Loaded-Nanostructured Lipid Carriers (NLC): Development, Characterization and Biocompatibility Studies
Current Drug Delivery The Epigenetic Origin of Aneuploidy
Current Genomics Peptide Aptamers: Specific Inhibitors of Protein Function
Current Molecular Medicine From Na+/K+-ATPase and Cardiac Glycosides to Cytotoxicity and Cancer Treatment
Anti-Cancer Agents in Medicinal Chemistry The MYC Oncogene as a Cancer Drug Target
Current Cancer Drug Targets Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship
Current Medicinal Chemistry Fork Head Transcription Factors
Current Genomics The Potential for Substance P Antagonists as Anti-Cancer Agents in Brain Tumours
Recent Patents on CNS Drug Discovery (Discontinued) Selective Cytotoxic Effects of 5-Trifluoromethoxy-<i>1H</i>-indole-2,3-dione 3-Thiosemicarbazone Derivatives on Lymphoid-originated Cells
Anti-Cancer Agents in Medicinal Chemistry Cancer Stem Cells: The Emerging Challenge of Drug Targeting
Current Medicinal Chemistry