Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

QSAR Models for the Reactivation of Sarin Inhibited Acetylcholinesterase by Quaternary Pyridinium Oximes Based on Monte Carlo Method

Author(s): Aleksandar M. Veselinovic, Jovana B. Veselinovic, Andrey A. Toropov, Alla P. Toropova and Goran M. Nikolic

Volume 10, Issue 3, 2014

Page: [266 - 273] Pages: 8

DOI: 10.2174/1574886309666141126144848

Price: $65

Abstract

Monte Carlo method has been used as a computational tool for building QSAR models for the reactivation of sarin inhibited acetylcholinesterase (AChE) by quaternary pyridinium oximes. Simplified molecular input line entry system (SMILES) together with hydrogen-suppressed graph (HSG) was used to represent molecular structure. Total number of considered oximes was 46 and activity was defined as logarithm of the AChE reactivation percentage by oximes with concentration of 0.001 M. One-variable models have been calculated with CORAL software for one data split into training, calibration and test set. Computational experiments indicated that this approach can satisfactorily predict the desired endpoint. Best QSAR model had the following statistical parameters: for training set r2 = 0.7096, s = 0.177, MAE = 0.148; calibration set: r2 = 0.6759, s = 0.330, MAE = 0.271 and test set: r2 = 0.8620, s = 0.182, MAE = 0.150. Structural indicators (SMILES based molecular fragments) for the increase and the decrease of the stated activity are defined. Using defined structural alerts computer aided design of new oxime derivatives with desired activity is presented.

Keywords: AChE reactivator, Chemoinformatics, CORAL, Drug design, oximes, QSAR, SMILES.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy