Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Structure-Activity Relationships of N-benzylsalicylamides for Inhibition of Photosynthetic Electron Transport

Author(s): Katarina Kralova, Milan Perina, Karel Waisser and Josef Jampilek

Volume 11, Issue 2, 2015

Page: [156 - 164] Pages: 9

DOI: 10.2174/1573406410666140815125004

Price: $65

Abstract

Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by sixty-one ring-substituted N-benzylsalicylamides was investigated. The inhibitory potency of the compounds expressed by IC50 value varied from 2.0 to 425.3 μmol/L. Several evaluated compounds can be considered as effective PET inhibitors; these include N-(3,4- dichlorobenzyl)-2-hydroxy-5-nitrobenzamide (IC50 = 2.0 μmol/L), 3,5-dibromo-N-(3,4-dichlorobenzyl)-2-hydroxybenzamide (IC50 = 2.3 μmol/L) and 3,5-dibromo-N-(4-chlorobenzyl)-2-hydroxybenzamide (IC50 = 2.6 μmol/L) with activity comparable with that of the standard Diuron (IC50 = 1.9 μmol/L). The PET inhibiting activity increased approximately linearly with increasing lipophilicity of the compounds as well as with the increasing sum of Hammett σ constants of the substituents on the acyl fragment (R1 = H, 5-OCH3, 5-CH3, 5-Cl, 5-Br, 5-NO2, 4-OCH3, 4-Cl, 3,5-Cl and 3,5-Br) and the benzylamide fragment (R2 = H, 4-OCH3, 4-CH3, 4-F, 4-Cl and 3,4-Cl). Based on the evaluated structure-PET inhibiting activity relationships (QSAR) it was confirmed that the inhibitory activity of the compounds depends on lipophilicity (log P or distributive parameters π 1 and π2of individual substituents) and electronic properties of the substituents on the acyl (σ1) and the benzylamide fragments (σ2), the contribution of σ1 being more significant than that of σ2.

Keywords: Hammett constants, lipophilicity, photosynthetic electron transport inhibition, ring-substituted N-benzylsalicylamides, spinach chloroplasts, structure-activity relationships.

Graphical Abstract


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy