Abstract
This review provides a comprehensive survey of the “one pot glycosylation” (OPG) strategy for the chemical synthesis of oligosaccharides, covering literatures from the first example reported by Kahne and Raghavan in 1993 through May 2003. The essence of the OPG is to distinguish the reactivity difference of a pair of the glycosylation donors or acceptors so as to carry out two glycosylation steps sequentially without purification of the first-step coupling product. Accordingly, the literature reports are grouped based on the major stereoelectronic factors causing the reactivity differences, those include the “armed-disarmed effect”, “orthogonality of leaving groups”, “distinguishable acceptors”, and “the hybrid”. “The hybrid” OPG procedure takes advantage of a combination of the reactivity disparity of a set of the armed-disarmed donors, orthogonal leaving groups, as well as acceptors so as to proceed three or more steps of glycosylation sequentially in one pot. Relevant conception and exploitation of the reactivity differences of the donors and acceptors in the synthesis of oligosaccharides, which finally evolve the OPG or advance parallelly, are briefly described at the beginning.
Keywords: glycoconjugates, oligosaccharide, glycosylation, steroelectronic effects, armed-disarmed donors