Abstract
Membrane-associated drug transporters are important determinants of antiretroviral drug disposition in the central nervous system during HIV-1 infection. A number of influx and efflux transport proteins expressed at the blood-brain barrier, blood-cerebrospinal fluid barrier and in brain parenchyma cellular compartments (i.e., astrocytes, microglia) have been implicated in the traffic of many antiretroviral drugs into and out of the brain. In particular, members of the ATP-binding cassette membrane associated transporter superfamily and Solute Carrier family are known to be involved in the efflux and/or influx of drugs, respectively. As a result, changes in the functional expression of these transporters can alter the disposition and distribution of drugs in the brain. Moreover, antiretroviral therapy itself and/or pathological events (i.e., inflammation, oxidative stress) associated with viral infection may affect the functional expression of these transporters. This review summarizes recent knowledge on the role of drug transporters in regulating brain antiretroviral drug transport in the context of HIV-1 infection.
Keywords: HIV-1, brain, drug transport, ABC transporter, SLC transporter, antiretroviral drugs, neuropathogenesis.
Current Pharmaceutical Design
Title:Role of CNS Transporters in the Pharmacotherapy of HIV-1 Associated Neurological Disorders
Volume: 20 Issue: 10
Author(s): Tamima Ashraf, Kevin Robillard, Gary N.Y. Chan and Reina Bendayan
Affiliation:
Keywords: HIV-1, brain, drug transport, ABC transporter, SLC transporter, antiretroviral drugs, neuropathogenesis.
Abstract: Membrane-associated drug transporters are important determinants of antiretroviral drug disposition in the central nervous system during HIV-1 infection. A number of influx and efflux transport proteins expressed at the blood-brain barrier, blood-cerebrospinal fluid barrier and in brain parenchyma cellular compartments (i.e., astrocytes, microglia) have been implicated in the traffic of many antiretroviral drugs into and out of the brain. In particular, members of the ATP-binding cassette membrane associated transporter superfamily and Solute Carrier family are known to be involved in the efflux and/or influx of drugs, respectively. As a result, changes in the functional expression of these transporters can alter the disposition and distribution of drugs in the brain. Moreover, antiretroviral therapy itself and/or pathological events (i.e., inflammation, oxidative stress) associated with viral infection may affect the functional expression of these transporters. This review summarizes recent knowledge on the role of drug transporters in regulating brain antiretroviral drug transport in the context of HIV-1 infection.
Export Options
About this article
Cite this article as:
Ashraf Tamima, Robillard Kevin, Chan N.Y. Gary and Bendayan Reina, Role of CNS Transporters in the Pharmacotherapy of HIV-1 Associated Neurological Disorders, Current Pharmaceutical Design 2014; 20 (10) . https://dx.doi.org/10.2174/13816128113199990464
DOI https://dx.doi.org/10.2174/13816128113199990464 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma
Current Pharmaceutical Design Jab1-siRNA Induces Cell Growth Inhibition and Cell Cycle Arrest in Gall Bladder Cancer Cells via Targeting Jab1 Signalosome
Anti-Cancer Agents in Medicinal Chemistry CDC25A: A Rebel Within the CDC25 Phosphatases Family?
Anti-Cancer Agents in Medicinal Chemistry Synthesis and Evaluation of Heterocycles Based Chalcone Derivatives as Antiproliferative Agents
Anti-Cancer Agents in Medicinal Chemistry [177Lu]-DOTA0-Tyr3-Octreotate: A Potential Targeted Radiotherapeutic for the Treatment of Medulloblastoma
Current Radiopharmaceuticals Effect of PI3K/AKT/mTOR Signaling Pathway on Regulating and Controlling the Anti-Invasion and Metastasis of Hepatoma Cells by Bufalin
Recent Patents on Anti-Cancer Drug Discovery Non-Homologous DNA End Joining in Anticancer Therapy
Current Cancer Drug Targets Stimulation of Peroxisome Proliferator-Activated Receptor-Gamma (PPARγ) using Pioglitazone Decreases the Survival of Acute Promyelocytic Leukemia Cells through Up-Regulation of PTEN Expression
Anti-Cancer Agents in Medicinal Chemistry Restoring TRAIL Induced Apoptosis Using Naturopathy. Hercules Joins Hand with Nature to Triumph Over Lernaean Hydra
Current Genomics Quantum Dot-Based Nanoprobes for In Vivo Targeted Imaging
Current Molecular Medicine Enhanced Free Radical Status of Cancer Cells Success and Failure of Prooxidant/Antioxidant Treatment
Current Signal Transduction Therapy Wnt/beta-Catenin Signaling and Small Molecule Inhibitors
Current Pharmaceutical Design The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory
Current Pharmaceutical Design Potential MicroRNA Targets for Cancer Chemotherapy
Current Medicinal Chemistry Anti-Cancer Cytotoxic Effects of Multiwalled Carbon Nanotubes
Current Pharmaceutical Design Conventional and Gene Therapy Strategies for the Treatment of Brain Tumors
Current Medicinal Chemistry Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration
Current Neuropharmacology CNS Drug Delivery Systems: Novel Approaches
Recent Patents on Drug Delivery & Formulation Drug Metabolism and Transport Under Hypoxia
Current Drug Metabolism Clinical Applications of the Urokinase Receptor (uPAR) for Cancer Patients
Current Pharmaceutical Design