Abstract
An overview how to measure and to quantify radiolysis by the addition of quenchers and to maintain Radio- Chemical Purity (RCP) of vulnerable methionine-containing regulatory peptides is presented. High RCP was only achieved with a combination of quenchers. However, quantification of RCP is not standardized, and therefore comparison of radiolabelling and RCP of regulatory peptides between different HPLC-systems and between laboratories is cumbersome. Therefore we suggest a set of standardized requirements to quantify RCP by HPLC for radiolabelled DTPA- or DOTA-peptides. Moreover, a dosimetry model was developed to calculate the doses in the reaction vials during radiolabelling and storage of the radiopeptides, and to predict RCP in the presence and absence of quenchers. RCP was measured by HPLC, and a relation between radiation dose and radiolysis of RCP was established. The here described quenchers are tested individually as ƒ(concentration) to investigate efficacy to reduce radiolysis of radiolabelled methionine-containing regulatory peptides.
Keywords: gastrin releasing peptide, HPLC, minigastrin, quenchers, radiochemical purity, radiolysis, methionine, regulatory peptides
Current Topics in Medicinal Chemistry
Title:Effectiveness of Quenchers to Reduce Radiolysis of 111In- or 177Lu-Labelled Methionine-Containing Regulatory Peptides. Maintaining Radiochemical Purity as Measured by HPLC
Volume: 12 Issue: 23
Author(s): Erik de Blois, Ho Sze Chan, Mark Konijnenberg, Rory de Zanger and Wouter A.P. Breeman
Affiliation:
Keywords: gastrin releasing peptide, HPLC, minigastrin, quenchers, radiochemical purity, radiolysis, methionine, regulatory peptides
Abstract: An overview how to measure and to quantify radiolysis by the addition of quenchers and to maintain Radio- Chemical Purity (RCP) of vulnerable methionine-containing regulatory peptides is presented. High RCP was only achieved with a combination of quenchers. However, quantification of RCP is not standardized, and therefore comparison of radiolabelling and RCP of regulatory peptides between different HPLC-systems and between laboratories is cumbersome. Therefore we suggest a set of standardized requirements to quantify RCP by HPLC for radiolabelled DTPA- or DOTA-peptides. Moreover, a dosimetry model was developed to calculate the doses in the reaction vials during radiolabelling and storage of the radiopeptides, and to predict RCP in the presence and absence of quenchers. RCP was measured by HPLC, and a relation between radiation dose and radiolysis of RCP was established. The here described quenchers are tested individually as ƒ(concentration) to investigate efficacy to reduce radiolysis of radiolabelled methionine-containing regulatory peptides.
Export Options
About this article
Cite this article as:
de Blois Erik, Sze Chan Ho, Konijnenberg Mark, de Zanger Rory and A.P. Breeman Wouter, Effectiveness of Quenchers to Reduce Radiolysis of 111In- or 177Lu-Labelled Methionine-Containing Regulatory Peptides. Maintaining Radiochemical Purity as Measured by HPLC, Current Topics in Medicinal Chemistry 2012; 12 (23) . https://dx.doi.org/10.2174/1568026611212230005
DOI https://dx.doi.org/10.2174/1568026611212230005 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Exosome Limitations in the Treatment of Inflammatory Diseases
Current Pharmaceutical Design Oral Hypoglycemics: A Review of Chemicals Used to Treat Type 2 Diabetes
Current Bioactive Compounds Targeting PDK1 in Cancer
Current Medicinal Chemistry Destroying RNA as a Therapeutic Approach
Current Medicinal Chemistry Epidemiology, Clinical Presentation and Treatment of Mucosal Melanoma
Clinical Cancer Drugs Small Molecule Approaches Toward the Non-Microbicidal Modulation of Bacterial Biofilm Growth and Maintenance
Anti-Infective Agents in Medicinal Chemistry Hsp90 Inhibitor Geldanamycin and Its Derivatives as Novel Cancer Chemotherapeutic Agents
Current Pharmaceutical Design The Leukocyte Common Antigen-Related Protein LAR: Candidate PTP for Inhibitory Targeting
Current Topics in Medicinal Chemistry Synthetic Androgens as Designer Supplements
Current Neuropharmacology FOXO Transcription Factors and their Role in Disorders of the Female Reproductive Tract
Current Drug Targets Model Checking a Synchronous Diabetes-Cancer Logical Network
Current Bioinformatics Graphical Abstracts
Current Nanoscience The ECL Cell: Relay Station for Gastric Integrity
Current Medicinal Chemistry Inhibitors of HIV-1 Protease: Current State of the Art 10 Years After their Introduction. From Antiretroviral Drugs to Antifungal, Antibacterial and Antitumor Agents Based on Aspartic Protease Inhibitors
Current Medicinal Chemistry Nanoparticles Mediated Target-specific Drug Delivery in Prostate Cancer: An In-depth Review
Current Medicinal Chemistry Genetic and Modifying Factors that Determine the Risk of Brain Tumors
Central Nervous System Agents in Medicinal Chemistry Sex Steroid Hormones, Cardiovascular Diseases and The Metabolic Syndrome
Cardiovascular & Hematological Agents in Medicinal Chemistry Evaluation of the Binding Affinity of a Gonadotropin-Releasing Hormone Analogue (GnRH-a) Buserelin through <i>In silico</i> and <i>In vivo</i> Testing in <i>Clarias magur</i>
Current Proteomics Non-Melanoma Skin Cancer – Overview
Current Cancer Therapy Reviews System Models, Assays and Endpoint Parameters to Evaluate Anticancer Compounds During Preclinical Screening
Current Medicinal Chemistry