Abstract
The importance of Akt, Erk, and their downstream effectors-mediated signaling is indisputable for the proliferation of cell. Growth factor-induced activation of Akt and Erk pathways interacts with each other to regulate proliferation. However, an instructive model, wiring the crucial signaling nodes working in cellular growth and division, is still absent or controversial. Although growth factor-mediated mTORC1 regulation is defined considerably, debates still exist formTORC2. TSC1-TSC2 complex integrates both nutrient and mitogenic signals coming from growth factor receptors. Growth factor-induced PI3K/Akt- and Ras/Erk-mediated TSC2 inhibition is well defined. However, the interaction between TSC complex and new molecules such as Pin1 and DAPK requires further clarifications. Furthermore, the Wnt-β-catenin signaling pathway also intersects with the growth factor signaling at TSC1/TSC2 junction. Therefore, the aim of this perspective paper is to suggest an integrated model, linking growth factor-activated crucial signaling nodes in order to supply key molecular connections to degenerative diseases.
Keywords: Akt, β-catenin, Erk, E2F1, DAPK, GSK3, mTORC1, mTORC2, Pin1, Wnt
Current Molecular Medicine
Title:An Integrated and Disease-Oriented Growth Factor-Regulated Signal Transduction Network
Volume: 13 Issue: 1
Author(s): A. Erol
Affiliation:
Keywords: Akt, β-catenin, Erk, E2F1, DAPK, GSK3, mTORC1, mTORC2, Pin1, Wnt
Abstract: The importance of Akt, Erk, and their downstream effectors-mediated signaling is indisputable for the proliferation of cell. Growth factor-induced activation of Akt and Erk pathways interacts with each other to regulate proliferation. However, an instructive model, wiring the crucial signaling nodes working in cellular growth and division, is still absent or controversial. Although growth factor-mediated mTORC1 regulation is defined considerably, debates still exist formTORC2. TSC1-TSC2 complex integrates both nutrient and mitogenic signals coming from growth factor receptors. Growth factor-induced PI3K/Akt- and Ras/Erk-mediated TSC2 inhibition is well defined. However, the interaction between TSC complex and new molecules such as Pin1 and DAPK requires further clarifications. Furthermore, the Wnt-β-catenin signaling pathway also intersects with the growth factor signaling at TSC1/TSC2 junction. Therefore, the aim of this perspective paper is to suggest an integrated model, linking growth factor-activated crucial signaling nodes in order to supply key molecular connections to degenerative diseases.
Export Options
About this article
Cite this article as:
Erol A., An Integrated and Disease-Oriented Growth Factor-Regulated Signal Transduction Network, Current Molecular Medicine 2013; 13 (1) . https://dx.doi.org/10.2174/1566524011307010086
DOI https://dx.doi.org/10.2174/1566524011307010086 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Novel Therapeutic Strategies for Dementia
CNS & Neurological Disorders - Drug Targets NUPR1 Interacts with p53, Transcriptionally Regulates p21 and Rescues Breast Epithelial Cells from Doxorubicin-Induced Genotoxic Stress
Current Cancer Drug Targets The Genetic Landscapes of Inflammation-Driven Gastrointestinal Tract Cancers
Current Pharmaceutical Design Selective Cytotoxic Effects of 5-Trifluoromethoxy-<i>1H</i>-indole-2,3-dione 3-Thiosemicarbazone Derivatives on Lymphoid-originated Cells
Anti-Cancer Agents in Medicinal Chemistry New Perspective on the Dual Functions of Indirubins in Cancer Therapy and Neuroprotection
Anti-Cancer Agents in Medicinal Chemistry Therapeutic Polycomb Targeting in Human Cancer
Recent Patents on Regenerative Medicine Curcumin and its Formulations: Potential Anti-Cancer Agents
Anti-Cancer Agents in Medicinal Chemistry Glioma: Tryptophan Catabolite and Melatoninergic Pathways Link microRNA, 14-3- 3, Chromosome 4q35, Epigenetic Processes and other Glioma Biochemical Changes
Current Pharmaceutical Design The Stress Response: Implications for the Clinical Development of Hsp90 Inhibitors
Current Cancer Drug Targets The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) Family of Proteins: Transcriptional Modifiers with Multi-Functional Protein Interfaces
Current Molecular Medicine Quality of Life of Children with Cerebral Palsy: A Cross-Sectional KIDSCREEN study in the Southern part of the Netherlands
CNS & Neurological Disorders - Drug Targets The Retinoblastoma Tumour Suppressor in Model Organisms-New Insights from Flies and Worms
Current Molecular Medicine IP6 & Inositol in Cancer Prevention and Therapy
Current Cancer Therapy Reviews Von Hippel-Lindau Disease
Current Molecular Medicine Gene Therapy in Plastic and Reconstructive Surgery
Current Gene Therapy Cell-Penetrating Peptides: Mechanisms and Applications
Current Pharmaceutical Design Vitamin D Analogs in Cutaneous Malignancies
Current Pharmaceutical Design Nitric Oxide Control of Proliferation in Nerve Cells and in Tumor Cells of Nervous Origin
Current Pharmaceutical Design High Specificity in Response of the Sodium-Dependent Multivitamin Transporter to Derivatives of Pantothenic Acid
Current Topics in Medicinal Chemistry Protein Aggregation and Defective RNA Metabolism as Mechanisms for Motor Neuron Damage
CNS & Neurological Disorders - Drug Targets