Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Anti-Cancer Agents in Medicinal Chemistry
Title: PARP Inhibitor Development for Systemic Cancer Targeting
Volume: 7 Issue: 5
Author(s): Tomasz Zaremba and Nicola Jane Curtin
Affiliation:
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Abstract: Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Export Options
About this article
Cite this article as:
Zaremba Tomasz and Curtin Jane Nicola, PARP Inhibitor Development for Systemic Cancer Targeting, Anti-Cancer Agents in Medicinal Chemistry 2007; 7 (5) . https://dx.doi.org/10.2174/187152007781668715
DOI https://dx.doi.org/10.2174/187152007781668715 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Tetracyclines: Drugs with Huge Therapeutic Potential
Mini-Reviews in Medicinal Chemistry Novel and Emerging Targeted Therapies of Colorectal Cancer
Current Clinical Pharmacology G Protein-Coupled Receptors – Potential Roles in Clinical Pharmacology
Cardiovascular & Hematological Agents in Medicinal Chemistry 3D-QSAR and Docking Simulation Studies of Some Benzopyrone Derivatives as Inhibitors for Breast Cancer Stem Cell Growth via PGlycoprotein Mediated Efflux
Current Bioinformatics The Key microRNAs Regulated the Development of Non-small Cell Lung Cancer by Targeting TGF-β-induced epithelial–mesenchymal Transition
Combinatorial Chemistry & High Throughput Screening Zidovudine Glycosylation by Filamentous Fungi Leads to a Better Redox Stability and Improved Cytotoxicity in B16F10 Murine Melanoma Cells
Anti-Cancer Agents in Medicinal Chemistry Phosphoinositide 3-Kinases and Leukocyte Migration
Current Immunology Reviews (Discontinued) Epigenetic Regulators Governing Cancer Stem Cells and Epithelial- Mesenchymal Transition in Oral Squamous Cell Carcinoma
Current Stem Cell Research & Therapy Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric and Teen Patients Allows Identifying Two Main Classes of Biological Processes Involved and New Potential Therapeutic Targets
Current Genomics The Quest for a Tumor Suppressor Gene Phenotype
Current Molecular Medicine Two Novel Heparin-binding Vascular Endothelial Growth Factor Splices, L-VEGF144 and L-VEGF138, are Expressed in Human Glioblastoma Cells
Current Neurovascular Research Exploiting Microglial Functions for the Treatment of Glioblastoma
Current Cancer Drug Targets Research Advances in Neuroblastoma Immunotherapy
Current Pediatric Reviews The LPS-Pretreated MSCs Supply a Positive Microenvironment for Tumor Cell Proliferation and Clone Formation
Current Protein & Peptide Science Development of Lymphatic Vessels: Tumour Lymphangiogenesis and Lymphatic Invasion
Current Medicinal Chemistry Molecular Pathology and Molecular Markers of Ductal Carcinoma in-situ
Current Cancer Therapy Reviews Advances in the Researches on the Biological Activities and Inhibitors of Phosphatidylinositol 3-kinase
Anti-Cancer Agents in Medicinal Chemistry Recent Advances on Immunosuppressive Drugs and Remyelination Enhancers for the Treatment of Multiple Sclerosis
Current Pharmaceutical Design Novel MicroRNA Signature to Differentiate Ulcerative Colitis from Crohn Disease: A Genome-Wide Study Using Next Generation Sequencing
MicroRNA Suppression of HIV-1 Viral Replication by Inhibiting Drug Efflux Transporters in Activated Macrophages
Current HIV Research