Abstract
Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF) preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads to the degeneration of muscle fibres, progressive weakness and premature death. Antisense oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping of targeted exons, restoring the ORF and the consequent production of a shorter but functional dystrophin protein. This approach may lead to an effective disease modifying treatment for DMD and progress towards clinical application has been rapid. Less than a decade has passed between the first studies published in 1998 describing the use of AOs to modify the DMD gene in mice and the results of the first intramuscular proof of concept clinical trials. Whilst phase II and III trials are now underway, the heterogeneity of DMD mutations, efficient systemic delivery and targeting of AOs to cardiac muscle remain significant challenges. Here we review the current status of AO-mediated therapy for DMD, discussing the preclinical, clinical and regulatory hurdles and their possible solutions to expedite the translation of AO-mediated exon skipping therapy to clinic.
Keywords: Antisense oligonucleotides, clinical trials, duchenne muscular dystrophy, becker muscular dystrophy, dystrophin, exon skipping, RNA therapy, BMD, PMO, DMD
Current Gene Therapy
Title:Antisense Oligonucleotide-Mediated Exon Skipping for Duchenne Muscular Dystrophy: Progress and Challenges
Volume: 12 Issue: 3
Author(s): Virginia Arechavala-Gomeza, Karen Anthony, Jennifer Morgan and Francesco Muntoni
Affiliation:
Keywords: Antisense oligonucleotides, clinical trials, duchenne muscular dystrophy, becker muscular dystrophy, dystrophin, exon skipping, RNA therapy, BMD, PMO, DMD
Abstract: Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF) preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads to the degeneration of muscle fibres, progressive weakness and premature death. Antisense oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping of targeted exons, restoring the ORF and the consequent production of a shorter but functional dystrophin protein. This approach may lead to an effective disease modifying treatment for DMD and progress towards clinical application has been rapid. Less than a decade has passed between the first studies published in 1998 describing the use of AOs to modify the DMD gene in mice and the results of the first intramuscular proof of concept clinical trials. Whilst phase II and III trials are now underway, the heterogeneity of DMD mutations, efficient systemic delivery and targeting of AOs to cardiac muscle remain significant challenges. Here we review the current status of AO-mediated therapy for DMD, discussing the preclinical, clinical and regulatory hurdles and their possible solutions to expedite the translation of AO-mediated exon skipping therapy to clinic.
Export Options
About this article
Cite this article as:
Arechavala-Gomeza Virginia, Anthony Karen, Morgan Jennifer and Muntoni Francesco, Antisense Oligonucleotide-Mediated Exon Skipping for Duchenne Muscular Dystrophy: Progress and Challenges, Current Gene Therapy 2012; 12 (3) . https://dx.doi.org/10.2174/156652312800840621
DOI https://dx.doi.org/10.2174/156652312800840621 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Current Biology of MTP: Implications for Selective Inhibition
Current Topics in Medicinal Chemistry Endotherapia
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Pharmacological Modulations of the Renin-Angiotensin-Aldosterone System in Human Congestive Heart Failure: Effects on Peripheral Vascular Endothelial Function
Current Vascular Pharmacology Emerging Concepts for Myocardial Late Gadolinium Enhancement MRI
Current Cardiology Reviews Meet Our Editor:
Current Cardiology Reviews QT Alterations in Psychopharmacology: Proven Candidates and Suspects
Current Drug Safety Scaffold Hopping for Identification of Novel PKCβII Inhibitors Based on Ligand and Structural Approaches, Virtual Screening and Molecular Dynamics Study
Combinatorial Chemistry & High Throughput Screening Angina in Women without Obstructive Coronary Artery Disease
Current Cardiology Reviews Fitness or Fatness: The Debate Continues for AMP-Activated Protein Kinase in Heart Function
Current Cardiology Reviews Cardiovascular Disease in Antiphospholipid Syndrome
Current Vascular Pharmacology Cancer Treatment-Induced Cardiotoxicity: a Cardiac Stem Cell Disease?
Cardiovascular & Hematological Agents in Medicinal Chemistry Incremental Value of Two Dimensional Speckle Tracking Echocardiography in the Functional Assessment and Characterization of Subclinical Left Ventricular Dysfunction
Current Cardiology Reviews B-Type Natriuretic Peptide for Diagnosis and Therapy
Recent Patents on Cardiovascular Drug Discovery Leptin and the Ob-Receptor as Anti-Obesity Target: Recent In Silico Advances in the Comprehension of the Protein-Protein Interaction and Rational Drug Design of Anti- Obesity Lead Compounds
Current Pharmaceutical Design Investigational Positive Inotropic Agents for Acute Heart Failure
Cardiovascular & Hematological Disorders-Drug Targets Arsenic Immunotoxicity and Immunomodulation by Phytochemicals: Potential Relations to Develop Chemopreventive Approaches
Recent Patents on Inflammation & Allergy Drug Discovery Left Ventricular Noncompaction: New Insights into a Poorly Understood Disease
Current Cardiology Reviews Statins and Oxidative Stress in the Cardiovascular System
Current Pharmaceutical Design A Mini-Review on Cardiovascular and Hematological Complications of COVID-19
Coronaviruses Beta-2 Agonists in Asthma: Medicine or Murderer?
Current Respiratory Medicine Reviews