Generic placeholder image

Current Drug Targets - Infectious Disorders

Editor-in-Chief

ISSN (Print): 1568-0053
ISSN (Online): 1875-5852

Recent Developments in Vaccine Delivery Systems

Author(s): D. T. O'Hagan

Volume 1, Issue 3, 2001

Page: [273 - 286] Pages: 14

DOI: 10.2174/1568005014606008

Price: $65

Abstract

New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and ‘immunostimulatory adjuvants’. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC), including macrophages and dendritic cells. This review will focus on recent developments in vaccine delivery systems. Immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined for more effective delivery of the immunostimulatory adjuvant into APC. A rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants and delivery system combinations may also allow vaccines to be delivered mucosally.


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy