Abstract
The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimers disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new “dynamic genome” model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.
Keywords: Ontogeny, somatic genome variations, chromosome instability, prenatal development, aging, aneuploidy, genomic instability
Current Genomics
Title: Ontogenetic Variation of the Human Genome
Volume: 11 Issue: 6
Author(s): Y. B. Yurov, S. G. Vorsanova and I. Y. Iourov
Affiliation:
Keywords: Ontogeny, somatic genome variations, chromosome instability, prenatal development, aging, aneuploidy, genomic instability
Abstract: The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimers disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new “dynamic genome” model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.
Export Options
About this article
Cite this article as:
Yurov B. Y., Vorsanova G. S. and Iourov Y. I., Ontogenetic Variation of the Human Genome, Current Genomics 2010; 11 (6) . https://dx.doi.org/10.2174/138920210793175958
DOI https://dx.doi.org/10.2174/138920210793175958 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Drug Development and the Importance of Ethnicity: Lessons from Heart Failure Management and Implications for Hypertension
Current Pharmaceutical Design Shared Signaling Pathways Between Endocrine and Immune System Receptors: The Model of Gamma Chain
Current Signal Transduction Therapy Clostridium Difficile Infection Following Chemotherapy
Recent Patents on Anti-Infective Drug Discovery Defining the Cough Spectrum and Reviewing the Evidence for Treating Non-Specific Cough in Children
Current Pediatric Reviews Headache: One of the Most Common and Troublesome Adverse Reactions to Drugs
Current Drug Safety Model-based Application for Adsorption of Lead (II) from Aqueous Solution using Low-cost Jute Stick Derived Activated Carbon
Current Analytical Chemistry Molecular Markers of Cardiovascular Damage in Hypertension
Current Pharmaceutical Design Interview: Dr. Muin J. Khoury Discusses the Future of Public Health Genomics and why it Matters for Personalized Medicine and Global Health
Current Pharmacogenomics and Personalized Medicine Melatonin and Aromatase in Breast Cancer
Clinical Cancer Drugs New Developments in Targeted Analysis of Protein Posttranslational Modifications
Current Proteomics Pharmacogenetics of Opioids for the Treatment of Acute Maternal Pain During Pregnancy and Lactation
Current Drug Metabolism Oncoproteomics of Neuroblastoma: A Blueprint for Future Progress
Current Proteomics Learning from Metabolic Networks: Current Trends and Future Directions for Precision Medicine
Current Medicinal Chemistry Extra-Hematopoietic Effects of Erythropoietin
Cardiovascular & Hematological Disorders-Drug Targets Monoclonal Antibodies, Bispecific Antibodies and Antibody-Drug Conjugates in Oncohematology
Recent Patents on Anti-Cancer Drug Discovery QT Prolongation and Anticancer Drugs: Is it a Cardiologist’s Worry? The Oncologist’s Point of View
Reviews on Recent Clinical Trials The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development
Current Molecular Medicine Structure, Substrate Complexation and Reaction Mechanism of Bacterial Asparaginases
Current Chemical Biology HSP90 Inhibitors: Current Development and Potential in Cancer Therapy
Recent Patents on Anti-Cancer Drug Discovery Commentary: Intravenous Immunoglobulin (IVIG) Therapy for Patients with Langerhans Cell Histiocytosis (LCH)-Related Neurodegenerative Diseases of the CNS
CNS & Neurological Disorders - Drug Targets