Abstract
A large amount of energy produced by active aerobic metabolism is necessary for the cochlea to maintain its function. This makes the cochlea vulnerable to blockade of cochlear blood flow and interruption of the oxygen supply. Although certain forms of human idiopathic sudden sensorineural hearing loss reportedly arise from ischemic injury, the pathological mechanism of cochlear ischemia-reperfusion injury has not been fully elucidated. Recent animal studies have shed light on the mechanisms of cochlear ischemia-reperfusion injury. It will help in the understanding of the pathology of cochlear ischemia-reperfusion injury to classify this injury into ischemic injury and reperfusion injury. Excitotoxicity, mainly observed during the ischemic period, aggravates the injury of primary auditory neurons. On the other hand, oxidative damage induced by hydroxyl radicals and nitric oxide enhances cochlear reperfusion injury. This article briefly summarizes the generation mechanisms of cochlear ischemia-reperfusion injury and potential therapeutic targets that could be developed for the effective management of this injury type.
Keywords: Cochlea, Blood flow, Ischemia-reperfusion injury, Excitotoxicity, Oxidative damage
Current Neuropharmacology
Title: Ischemia-Reperfusion Injury of the Cochlea: Pharmacological Strategies for Cochlear Protection and Implications of Glutamate and Reactive Oxygen Species
Volume: 8 Issue: 2
Author(s): Keiji Tabuchi, Bungo Nishimura, Shuho Tanaka, Kentaro Hayashi, Yuki Hirose and Akira Hara
Affiliation:
Keywords: Cochlea, Blood flow, Ischemia-reperfusion injury, Excitotoxicity, Oxidative damage
Abstract: A large amount of energy produced by active aerobic metabolism is necessary for the cochlea to maintain its function. This makes the cochlea vulnerable to blockade of cochlear blood flow and interruption of the oxygen supply. Although certain forms of human idiopathic sudden sensorineural hearing loss reportedly arise from ischemic injury, the pathological mechanism of cochlear ischemia-reperfusion injury has not been fully elucidated. Recent animal studies have shed light on the mechanisms of cochlear ischemia-reperfusion injury. It will help in the understanding of the pathology of cochlear ischemia-reperfusion injury to classify this injury into ischemic injury and reperfusion injury. Excitotoxicity, mainly observed during the ischemic period, aggravates the injury of primary auditory neurons. On the other hand, oxidative damage induced by hydroxyl radicals and nitric oxide enhances cochlear reperfusion injury. This article briefly summarizes the generation mechanisms of cochlear ischemia-reperfusion injury and potential therapeutic targets that could be developed for the effective management of this injury type.
Export Options
About this article
Cite this article as:
Tabuchi Keiji, Nishimura Bungo, Tanaka Shuho, Hayashi Kentaro, Hirose Yuki and Hara Akira, Ischemia-Reperfusion Injury of the Cochlea: Pharmacological Strategies for Cochlear Protection and Implications of Glutamate and Reactive Oxygen Species, Current Neuropharmacology 2010; 8 (2) . https://dx.doi.org/10.2174/157015910791233123
DOI https://dx.doi.org/10.2174/157015910791233123 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Inflammation and Coronary Artery Disease
Current Vascular Pharmacology The HVJ-Envelope as an Innovative Vector System for Cardiovascular Disease
Current Gene Therapy Thrombotic Microangiopathy and Occult Neoplasia
Cardiovascular & Hematological Disorders-Drug Targets The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury
Mini-Reviews in Medicinal Chemistry Mesenchymal Stem Cells for Ischemic Stroke: Progress and Possibilities
Current Medicinal Chemistry Peroxisome Proliferator-Activated Receptor-α Activation Protects Brain Capillary Endothelial Cells from Oxygen-Glucose Deprivation-Induced Hyperpermeability in the Blood-Brain Barrier
Current Neurovascular Research Neuroprotective Effects of Trolox, Human Chorionic Gonadotropin, and Carnosic Acid on Hippocampal Neurodegeneration After Ischemiareperfusion Injury
Current Stem Cell Research & Therapy Cardiac Surgery and Inflammation: The Inflammatory Response and Strategies to Reduce the Systemic Inflammatory Response Syndrome
Current Cardiology Reviews Diagnostic Value of HLA Typing in Pathogenesis of Cardiomyopathy
Cardiovascular & Hematological Disorders-Drug Targets The Role of Oxidative Stress Modulators in Breast Cancer
Current Medicinal Chemistry Cannabinoids as Neuroprotective Agents in Traumatic Brain Injury
Current Pharmaceutical Design A Quantitative Proteomic Analysis to Reveal Effects of N-acetylcysteine on H<sub>2</sub>O<sub>2</sub>-induced Cytotoxicity
Current Proteomics Effects of Hypoxia and Ischemia on MicroRNAs in the Brain
Current Medicinal Chemistry A Simple and Rapid Method for Expression and Purification of Functional TNF-α Using GST Fusion System
Current Pharmaceutical Biotechnology The Pivotal Role of Nitric Oxide: Effects on the Nervous and Immune Systems
Current Pharmaceutical Design Sesamin and Sesamolin: Natures Therapeutic Lignans
Current Enzyme Inhibition The Circadian PER2 Enhancer Nobiletin Reverses the Deleterious Effects of Midazolam in Myocardial Ischemia and Reperfusion Injury
Current Pharmaceutical Design Insulin-Like Growth Factor-1 and its Derivatives: Potential Pharmaceutical Application for Treating Neurological Conditions
Recent Patents on CNS Drug Discovery (Discontinued) Sodium Ion Transporters as New Therapeutic Targets in Heart Failure
Cardiovascular & Hematological Agents in Medicinal Chemistry Patents in Targets and Drugs for Unbalanced Cytokine and Chemokine Network Mediated Disorders
Recent Patents on Inflammation & Allergy Drug Discovery