Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry Test_Journal

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 123-456

Review Article

Mechanisms and Application Prospects

In Press, (this is not the final "Version of Record"). Available online 04 December, 2024
Author(s): Francesco Sessa, Cristoforo Pomara*, Flavia Schembari, Massimiliano Esposito, Emanuele Capasso, Mauro Pesaresi, Eduardo Osuna, Efehan Ulas, Christian Zammit and Monica Salerno
Published on: 04 December, 2024

DOI: 10.2174/0118715206322163240710112450

Price: $50

Abstract

Cancer is the second leading cause of death globally. Despite some successes,

[1]
Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front. Aging Neurosci., 2022, 14, 825086.
[http://dx.doi.org/10.3389/fnagi.2022.825086]
[2]
Ahluwalia, M.; Gaur, P.; Vaibhav, K. Brain injury and neurodegeneration: molecular, functional, and translational approach. Biomedicines, 2023, 11(7), 1947.
[http://dx.doi.org/10.3390/biomedicines11071947] [PMID: 37509586]
[3]
Brett, B.L.; Gardner, R.C.; Godbout, J.; Dams-O’Connor, K.; Keene, C.D. Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatry, 2022, 91(5), 498-507.
[http://dx.doi.org/10.1016/j.biopsych.2021.05.025] [PMID: 34364650]
[4]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human brain injury and mirnas: An experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064195391&doi=10.3390%2Fijms20071546&partnerID=40&md5=e33a639f22c3e66154945309fc0f24df
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[5]
Carvalho, L.B.; dos Santos Sanna, P.L.; dos Santos Afonso, C.C.; Bondan, E.F.; da Silva Feltran, G.; Ferreira, M.R.; Birbrair, A.; Andia, D.C.; Latini, A.; Foganholi da Silva, R.A. MicroRNA biogenesis machinery activation and lncRNA and REST overexpression as neuroprotective responses to fight inflammation in the hippocampus. J. Neuroimmunol., 2023, 382, 578149.
[http://dx.doi.org/10.1016/j.jneuroim.2023.578149] [PMID: 37481910]
[6]
Bonin, S.; D’Errico, S.; Medeot, C.; Moreschi, C.; Ciglieri, S.S.; Peruch, M.; Concato, M.; Azzalini, E.; Previderè, C.; Fattorini, P. Evaluation of a set of miRNAs in 26 Cases of fatal traumatic brain injuries. Int. J. Mol. Sci., 2023, 24(13), 10836.
[http://dx.doi.org/10.3390/ijms241310836] [PMID: 37446013]
[7]
Khatri, N.; Sumadhura, B.; Kumar, S.; Kaundal, R.K.; Sharma, S.; Datusalia, A.K. The complexity of secondary cascade consequent to traumatic brain injury: pathobiology and potential treatments. Curr. Neuropharmacol., 2021, 19(11), 1984-2011.
[http://dx.doi.org/10.2174/1570159X19666210215123914] [PMID: 33588734]
[8]
Fesharaki-Zadeh, A. Oxidative stress in traumatic brain injury. Int. J. Mol. Sci., 2022, 23(21), 13000.
[http://dx.doi.org/10.3390/ijms232113000]
[9]
Freire, M.A.M.; Rocha, G.S.; Bittencourt, L.O.; Falcao, D.; Lima, R.R.; Cavalcanti, J.R.L.P. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far? Biology (Basel), 2023, 12(8), 1139.
[http://dx.doi.org/10.3390/biology12081139] [PMID: 37627023]
[10]
Bertozzi, G.; Maglietta, F.; Sessa, F.; Scoto, E.; Cipolloni, L.; Di Mizio, G. Traumatic brain injury: a forensic approach. A literature review. Curr. Neuropharmacol., 2019, 17, 1-13.http://www.eurekaselect.com/node/176333/article
[PMID: 31686630]
[11]
Slota, J.A.; Booth, S.A. MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA, 2019, 5(2), 35.
[http://dx.doi.org/10.3390/ncrna5020035] [PMID: 31022830]
[12]
Gaytán-Pacheco, N.; Ibáñez-Salazar, A.; Herrera-Van Oostdam, A.S.; Oropeza-Valdez, J.J.; Magaña-Aquino, M.; Adrián López, J.; Monárrez-Espino, J.; López-Hernández, Y. miR-146a, miR-221, and miR-155 are involved in inflammatory immune response in severe COVID-19 patients. Diagnostics (Basel), 2022, 13(1), 133.
[http://dx.doi.org/10.3390/diagnostics13010133] [PMID: 36611425]
[13]
Indrieri, A.; Carrella, S.; Carotenuto, P.; Banfi, S.; Franco, B. The pervasive role of the MiR-181 family in development, neurodegeneration, and cancer. Int. J. Mol. Sci., 2020, 21(6), 2092.
[http://dx.doi.org/10.3390/ijms21062092] [PMID: 32197476]
[14]
Li, S.; Lei, Z.; Sun, T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol. Toxicol., 2023, 39(1), 53-83.
[http://dx.doi.org/10.1007/s10565-022-09761-x]
[15]
Gentile, G.; Morello, G.; La Cognata, V.; Guarnaccia, M.; Conforti, F.L.; Cavallaro, S. Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. J. Pers. Med., 2022, 12(5), 770.
[http://dx.doi.org/10.3390/jpm12050770] [PMID: 35629192]
[16]
Tan, L.; Yu, J.T.; Tan, L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol., 2015, 51(3), 1249-1262.
[http://dx.doi.org/10.1007/s12035-014-8803-9]
[17]
Kamal, M.; Mushtaq, G.; Greig, N. Current update on synopsis of miRNA dysregulation in neurological disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(4), 492-501.
[http://dx.doi.org/10.2174/1871527314666150225143637] [PMID: 25714967]
[18]
Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther., 2023, 8(1), 267.
[http://dx.doi.org/10.1038/s41392-023-01486-5]
[19]
Sessa, F.; Salerno, M.; Esposito, M.; Cocimano, G.; Pisanelli, D.; Malik, A.; Khan, A.A.; Pomara, C. New insight into mechanisms of cardiovascular diseases: An integrative analysis approach to identify TheranoMiRNAs. Int. J. Mol. Sci., 2023, 24(7), 6781.
[http://dx.doi.org/10.3390/ijms24076781] [PMID: 37047756]
[20]
Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs as biomarkers for diagnosis, Prognosis and theranostics in prostate cancer. Int. J. Mol. Sci., 2016, 17(3), 421.
[http://dx.doi.org/10.3390/ijms17030421] [PMID: 27011184]
[21]
Xie, G.; Chen, H.; He, C.; Hu, S.; Xiao, X.; Luo, Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct. Integr. Genomics, 2023, 23(3), 287.
[http://dx.doi.org/10.1007/s10142-023-01220-y]
[22]
Ma, Q.; Zhang, L.; Pearce, W.J. MicroRNAs in brain development and cerebrovascular pathophysiology. Am. J. Physiol. Cell Physiol., 2019, 317(1), C3-C19.
[http://dx.doi.org/10.1152/ajpcell.00022.2019] [PMID: 30840494]
[23]
Di Pietro, V.; Yakoub, K.M.; Scarpa, U.; Di Pietro, C.; Belli, A. MicroRNA signature of traumatic brain injury: From the biomarker discovery to the point-of-care. Front. Neurol., 2018, 9, 429.
[http://dx.doi.org/10.3389/fneur.2018.00429] [PMID: 29963002]
[24]
Musso, N.; Bivona, D.; Bonomo, C.; Bonacci, P.; D’Ippolito, M.E.; Boccagni, C.; Rubino, F.; De Tanti, A.; Lucca, L.F.; Pingue, V.; Colombo, V.; Estraneo, A.; Stefani, S.; Andriolo, M.; Bagnato, S. Investigating microRNAs as biomarkers in disorders of consciousness: A longitudinal multicenter study. Sci. Rep., 2023, 13(1), 18415.
[http://dx.doi.org/10.1038/s41598-023-45719-7] [PMID: 37891240]
[25]
Nazarov, P.V.; Kreis, S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput. Struct. Biotechnol. J., 2021, 19, 1154-1162.
[http://dx.doi.org/10.1016/j.csbj.2021.01.029] [PMID: 33680358]
[26]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[27]
Maugeri, M.; Barbagallo, D.; Barbagallo, C.; Banelli, B.; Di Mauro, S.; Purrello, F.; Magro, G.; Ragusa, M.; Di Pietro, C.; Romani, M.; Purrello, M. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma. Oncotarget, 2016, 7(50), 83330-83341.
[http://dx.doi.org/10.18632/oncotarget.13090] [PMID: 27829219]
[28]
Saito, Y.; Saito, H. MicroRNAs in cancers and neurodegenerative disorders. Front. Genet., 2012, 3, 194.
[PMID: 23056009]
[29]
van Rooij, E.; Kauppinen, S. Development of micro RNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[30]
Shah, S.Z.A.; Zhao, D.; Hussain, T.; Sabir, N.; Yang, L. Regulation of MicroRNAs-mediated autophagic flux: A new regulatory avenue for neurodegenerative diseases with focus on prion diseases. Front. Aging Neurosci., 2018, 10, 139.
[http://dx.doi.org/10.3389/fnagi.2018.00139] [PMID: 29867448]
[31]
Santos, D.M. Solá. S.; Steer, C.J.; Rodrigues, C.C.M.P. MiR-34a regulates mouse neural stem cell differentiation. PLoS One, 2011, 6(8), e21396.
[32]
Hu, H.Y.; Guo, S.; Xi, J.; Yan, Z.; Fu, N.; Zhang, X.; Menzel, C.; Liang, H.; Yang, H.; Zhao, M.; Zeng, R.; Chen, W.; Pääbo, S.; Khaitovich, P. MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet., 2011, 7(10), e1002327.
[http://dx.doi.org/10.1371/journal.pgen.1002327] [PMID: 22022286]
[33]
de Antonellis, P.; Medaglia, C.; Cusanelli, E.; Andolfo, I.; Liguori, L.; De Vita, G.; Carotenuto, M.; Bello, A.; Formiggini, F.; Galeone, A.; De Rosa, G.; Virgilio, A.; Scognamiglio, I.; Sciro, M.; Basso, G.; Schulte, J.H.; Cinalli, G.; Iolascon, A.; Zollo, M. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One, 2011, 6(9), e24584.
[http://dx.doi.org/10.1371/journal.pone.0024584] [PMID: 21931765]
[34]
Burgos, K.; Malenica, I.; Metpally, R.; Courtright, A.; Rakela, B.; Beach, T.; Shill, H.; Adler, C.; Sabbagh, M.; Villa, S.; Tembe, W.; Craig, D.; Van Keuren-Jensen, K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One, 2014, 9(5), e94839.
[http://dx.doi.org/10.1371/journal.pone.0094839] [PMID: 24797360]
[35]
Podolska, A.; Kaczkowski, B.; Kamp, B.P.; Søkilde, R.; Litman, T.; Fredholm, M.; Cirera, S. MicroRNA expression profiling of the porcine developing brain. PLoS One, 2011, 6(1), e14494.
[http://dx.doi.org/10.1371/journal.pone.0014494] [PMID: 21253018]
[36]
Zhao, Y.; Ji, S.; Wang, J.; Huang, J.; Zheng, P. mRNA-Seq and microRNA-Seq whole-transcriptome analyses of rhesus monkey embryonic stem cell neural differentiation revealed the potential regulators of rosette neural stem cells. DNA Res., 2014, 21(5), 541-554.
[http://dx.doi.org/10.1093/dnares/dsu019] [PMID: 24939742]
[37]
Garg, N.; Vijayakumar, T.; Bakhshinyan, D.; Venugopal, C.; Singh, S.K. MicroRNA regulation of brain tumour initiating cells in central nervous system tumours. Stem Cells Int., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/141793] [PMID: 26064134]
[38]
Smith, B.; Treadwell, J.; Zhang, D.; Ly, D.; McKinnell, I.; Walker, P.R.; Sikorska, M. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One, 2010, 5(6), e11109.
[http://dx.doi.org/10.1371/journal.pone.0011109] [PMID: 20559549]
[39]
Stumpfova, Z.; Hezova, R.; Meli, A.C.; Slaby, O.; Michalek, J. MicroRNA profiling of activated and tolerogenic human dendritic cells. Mediators Inflamm., 2014, 2014, 259689.
[http://dx.doi.org/10.1155/2014/259689]
[40]
Fuschi, P.; Carrara, M.; Voellenkle, C.; Garcia-Manteiga, J.M.; Righini, P.; Maimone, B.; Sangalli, E.; Villa, F.; Specchia, C.; Picozza, M.; Nano, G.; Gaetano, C.; Spinetti, G.; Puca, A.A.; Magenta, A.; Martelli, F. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY), 2017, 9(12), 2559-2586.
[http://dx.doi.org/10.18632/aging.101341] [PMID: 29242407]
[41]
Chatterjee, P.; Bhattacharyya, M.; Bandyopadhyay, S.; Roy, D. Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS One, 2014, 9(4), e93751.
[http://dx.doi.org/10.1371/journal.pone.0093751] [PMID: 24690883]
[42]
Saugstad, J.A. Non-coding RNAs in stroke and neuroprotection. Front. Neurol., 2015, 6, 50.
[http://dx.doi.org/10.3389/fneur.2015.00050] [PMID: 25821444]
[43]
Meza-Sosa, K.F.; Pedraza-Alva, G.; Pérez-Martínez, L. microRNAs: Key triggers of neuronal cell fate. Front. Cell. Neurosci., 2014, 8, 175.
[http://dx.doi.org/10.3389/fncel.2014.00175] [PMID: 25009466]
[44]
Tian, Y.; Nan, Y.; Han, L.; Zhang, A.; Wang, G.; Jia, Z.; Hao, J.; Pu, P.; Zhong, Y.; Kang, C. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int. J. Oncol., 2012, 40(4), 1105-1112.
[PMID: 22179124]
[45]
Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci. Rep., 2016, 6(1), 28148.
[http://dx.doi.org/10.1038/srep28148] [PMID: 27338832]
[46]
Ren, Y.; Zhou, X.; Mei, M.; Yuan, X.B.; Han, L.; Wang, G.X.; Jia, Z.F.; Xu, P.; Pu, P.Y.; Kang, C.S. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer, 2010, 10(1), 27.
[http://dx.doi.org/10.1186/1471-2407-10-27] [PMID: 20113523]
[47]
Maes, O.; Chertkow, H.; Wang, E.; Schipper, H. MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Curr. Genomics, 2009, 10(3), 154-168.
[http://dx.doi.org/10.2174/138920209788185252] [PMID: 19881909]
[48]
McKiernan, R.C.; Jimenez-Mateos, E.M.; Bray, I.; Engel, T.; Brennan, G.P.; Sano, T.; Michalak, Z.; Moran, C.; Delanty, N.; Farrell, M.; O’Brien, D.; Meller, R.; Simon, R.P.; Stallings, R.L.; Henshall, D.C. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One, 2012, 7(5), e35921.
[http://dx.doi.org/10.1371/journal.pone.0035921] [PMID: 22615744]
[49]
Bai, X.; Zheng, L.; Xu, Y.; Liang, Y.; Li, D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int., 2022, 22(1), 381.
[http://dx.doi.org/10.1186/s12935-022-02797-3]
[50]
Desole, C.; Gallo, S.; Vitacolonna, A.; Montarolo, F.; Bertolotto, A.; Vivien, D.; Comoglio, P.; Crepaldi, T. HGF and MET: From brain development to neurological disorders. Front. Cell Dev. Biol., 2021, 9, 683609.
[http://dx.doi.org/10.3389/fcell.2021.683609] [PMID: 34179015]
[51]
Ransohoff, R.M.; Schafer, D.; Vincent, A.; Blachère, N.E.; Bar-Or, A. Neuroinflammation: Ways in which the immune system affects the brain. Neurotherapeutics, 2015, 12(4), 896-909.
[http://dx.doi.org/10.1007/s13311-015-0385-3] [PMID: 26306439]
[52]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: the devil is in the details. J. Neurochem., 2016, 139(S2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[53]
Brighenti, M. MicroRNA and MET in lung cancer. Ann. Transl. Med., 2015, 3(5)
[54]
Li, Y.J.; Du, L.; Aldana-Masangkay, G.; Wang, X.; Urak, R.; Forman, S.J.; Rosen, S.T.; Chen, Y. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res., 2018, 46(14), 7108-7123.
[http://dx.doi.org/10.1093/nar/gky484] [PMID: 29893976]
[55]
Olejniczak, M.; Kotowska-Zimmer, A.; Krzyzosiak, W. Stress-induced changes in miRNA biogenesis and functioning. Cell. Mol. Life Sci., 2018, 75(2), 177-191.
[http://dx.doi.org/10.1007/s00018-017-2591-0] [PMID: 28717872]
[56]
Sarkar, S.N.; Russell, A.E.; Engler-Chiurazzi, E.B.; Porter, K.N.; Simpkins, J.W. MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis., 2019, 10(2), 329-352.
[http://dx.doi.org/10.14336/AD.2018.0409] [PMID: 31011481]
[57]
Garcia-Martínez, I.; Sánchez-Mora, C.; Pagerols, M.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Cormand, B.; Casas, M.; Ramos-Quiroga, J.A.; Ribasés, M. Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Transl. Psychiatry, 2016, 6(8), e879.
[http://dx.doi.org/10.1038/tp.2016.151] [PMID: 27576168]
[58]
Kapoor, A.; Nation, D.A. Role of Notch signaling in neurovascular aging and Alzheimer’s disease. Semin. Cell Dev. Biol., 2021, 116, 90-97.
[http://dx.doi.org/10.1016/j.semcdb.2020.12.011] [PMID: 33384205]
[59]
Akil, A.; Gutiérrez-García, A.K.; Guenter, R.; Rose, J.B.; Beck, A.W.; Chen, H.; Ren, B. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: An update and prospective. Front. Cell Dev. Biol., 2021, 9, 642352.
[http://dx.doi.org/10.3389/fcell.2021.642352] [PMID: 33681228]
[60]
Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 53.
[http://dx.doi.org/10.1186/s13046-019-1059-5]
[61]
Siebel, C.; Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev., 2017, 97(4), 1235-1294.
[http://dx.doi.org/10.1152/physrev.00005.2017] [PMID: 28794168]
[62]
Fang, L.; Sun, B.; Huang, L.; Yuan, H.; Zhang, S.; Chen, J.; Yu, Z.; Luo, H. Potent inhibition of miR-34b on migration and invasion in metastatic prostate cancer cells by regulating the TGF-β pathway. Int. J. Mol. Sci., 2017, 18(12), 2762.
[http://dx.doi.org/10.3390/ijms18122762] [PMID: 29257105]
[63]
Hiew, L.F.; Poon, C.H.; You, H.Z.; Lim, L.W. Tgf‐β/smad signalling in neurogenesis: Implications for neuropsychiatric diseases. Cells, 2021, 10(6), 1382.
[http://dx.doi.org/10.3390/cells10061382] [PMID: 34205102]
[64]
Shi, J.; Hao, A.; Zhang, Q.; Sui, G. The role of YY1 in oncogenesis and its potential as a drug target in cancer therapies. Curr. Cancer Drug Targets, 2015, 15(2), 145-157.
[http://dx.doi.org/10.2174/1568009615666150131124200] [PMID: 25817371]
[65]
Farahzadi, R.; Valipour, B.; Fathi, E.; Pirmoradi, S.; Molavi, O.; Montazersaheb, S.; Sanaat, Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res. Ther., 2023, 14(1), 342.
[http://dx.doi.org/10.1186/s13287-023-03571-6] [PMID: 38017510]
[66]
Jacques, C.; Tesfaye, R.; Lavaud, M.; Georges, S.; Baud’huin, M.; Lamoureux, F.; Ory, B. Implication of the p53-related miR-34c,] -125b, and -203 in the osteoblastic differentiation and the malignant transformation of bone sarcomas. Cells, 2020, 9(4), 810.
[http://dx.doi.org/10.3390/cells9040810] [PMID: 32230926]
[67]
Fu, J.; Imani, S.; Wu, M.Y.; Wu, R.C. MicroRNA-34 family in cancers: role, mechanism, and therapeutic potential. Cancers (Basel), 2023, 15(19), 4723.
[http://dx.doi.org/10.3390/cancers15194723] [PMID: 37835417]
[68]
Shen, Z.G.; Liu, X.Z.; Chen, C.X.; Lu, J.M. Knockdown of E2F3 inhibits proliferation, migration, and invasion and increases apoptosis in glioma cells. Oncol. Res., 2017, 25(9), 1555-1566.
[http://dx.doi.org/10.3727/096504017X14897158009178] [PMID: 28337965]
[69]
Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Dong, P.; Gassler, N.; Taheri, M.; Baniahmad, A.; Dilmaghani, N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int., 2022, 22(1), 325.
[http://dx.doi.org/10.1186/s12935-022-02747-z]
[70]
Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54.
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[71]
Zhou, Y.L.; Xu, Y.J.; Qiao, C.W. MiR-34c-3p suppresses the proliferation and invasion of non-small cell lung cancer (NSCLC) by inhibiting PAC1/MAPK pathway. Int J Clin Exp Pathol., 2015, 8.
[72]
Cannell, I.; Bushell, M. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle, 2010, 9(14), 2798-2802.
[http://dx.doi.org/10.4161/cc.9.14.12182] [PMID: 20603603]
[73]
Kadkhoda, S.; Eslami, S.; Mahmud Hussen, B.; Ghafouri-Fard, S. A review on the importance of miRNA-135 in human diseases. Front. Genet., 2022, 13, 973585.
[http://dx.doi.org/10.3389/fgene.2022.973585]
[74]
Hutter, S.; Bolin, S.; Weishaupt, H.; Swartling, F. Modeling and targeting MYC genes in childhood brain tumors. Genes (Basel), 2017, 8(4), 107.
[http://dx.doi.org/10.3390/genes8040107] [PMID: 28333115]
[75]
Tregub, P.P.; Ibrahimli, I.; Averchuk, A.S.; Salmina, A.B.; Litvitskiy, P.F.; Manasova, Z.S.; Popova, I.A. The role of microRNAs in epigenetic regulation of signaling pathways in neurological pathologies. Int. J. Mol. Sci., 2023, 24(16), 12899.
[http://dx.doi.org/10.3390/ijms241612899] [PMID: 37629078]
[76]
Guan, T.; Dominguez, C.X.; Amezquita, R.A.; Laidlaw, B.J.; Cheng, J.; Henao-Mejia, J.; Williams, A.; Flavell, R.A.; Lu, J.; Kaech, S.M. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. J. Exp. Med., 2018, 215(4), 1153-1168.
[http://dx.doi.org/10.1084/jem.20171352] [PMID: 29449309]
[77]
Burk, U.; Schubert, J.; Wellner, U.; Schmalhofer, O.; Vincan, E.; Spaderna, S.; Brabletz, T. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Rep., 2008, 9(6), 582-589.
[http://dx.doi.org/10.1038/embor.2008.74] [PMID: 18483486]
[78]
Poonaki, E.; Kahlert, U.D.; Meuth, S.G.; Gorji, A. The role of the ZEB1-neuroinflammation axis in CNS disorders. J. Neuroinflammation, 2022, 19(1), 275.
[http://dx.doi.org/10.1186/s12974-022-02636-2] [PMID: 36402997]
[79]
Leskelä, S.; Leandro-García, L.J.; Mendiola, M.; Barriuso, J.; Inglada-Pérez, L.; Muñoz, I.; Martínez-Delgado, B.; Redondo, A.; de Santiago, J.; Robledo, M.; Hardisson, D.; Rodríguez-Antona, C. The miR-200 family controls-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr. Relat. Cancer, 2010, 18(1), 85-95.
[http://dx.doi.org/10.1677/ERC-10-0148] [PMID: 21051560]
[80]
Kozak, J.; Jonak, K.; Maciejewski, R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed. Pharmacother., 2020, 125, 110037.
[http://dx.doi.org/10.1016/j.biopha.2020.110037] [PMID: 32187964]
[81]
Drápela, S.; Bouchal, J.; Jolly, M.K.; Culig, Z.; Souček, K. ZEB1: A critical regulator of cell plasticity, DNA damage response, and therapy resistance. Front. Mol. Biosci., 2020, 7, 36.
[http://dx.doi.org/10.3389/fmolb.2020.00036] [PMID: 32266287]
[82]
Sundararajan, V.; Burk, U.C.; Bajdak-Rusinek, K. Revisiting the miR-200 Family: A clan of five siblings with essential roles in development and disease. Biomolecules, 2022, 12(6), 781.
[http://dx.doi.org/10.3390/biom12060781] [PMID: 35740906]
[83]
Huang, Z.; Zhang, Z.; Zhou, C.; Liu, L.; Huang, C. Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm, 2022, 3(2), e144.
[http://dx.doi.org/10.1002/mco2.144]
[84]
Rashidi, S.K.; Kalirad, A.; Rafie, S.; Behzad, E.; Dezfouli, M.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front. Mol. Neurosci., 2023, 16, 1226413.
[http://dx.doi.org/10.3389/fnmol.2023.1226413] [PMID: 37727513]
[85]
Madathil, S.K.; Saatman, K.E. IGF-1/IGF-R signaling in traumatic brain injury: Impact on cell survival, neurogenesis, and behavioral outcome. In: Brain Neurotrauma; Molecular, Neuropsychological, and Rehabilitation Aspects, 2015; pp. 61-78.
[86]
Stary, C.M.; Xu, L.; Sun, X.; Ouyang, Y.B.; White, R.E.; Leong, J.; Li, J.; Xiong, X.; Giffard, R.G. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke, 2015, 46(2), 551-556.
[http://dx.doi.org/10.1161/STROKEAHA.114.007041] [PMID: 25604249]
[87]
Sadeghi, M.S. lotfi, M.; Soltani, N.; Farmani, E.; Fernandez, J.H.O.; Akhlaghitehrani, S.; Mohammed, S.H.; Yasamineh, S.; Kalajahi, H.G.; Gholizadeh, O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int., 2023, 23(1), 284.
[http://dx.doi.org/10.1186/s12935-023-03133-z] [PMID: 37986065]
[88]
Li, Q.; Li, Y.; Zhang, D.; Gao, H.; Gao, X. Downregulation of microRNA 451 improves cell migration, invasion and tube formation in hypoxia treated HUVECs by targeting MIF. Mol. Med. Rep., 2019, 20(2), 1167-1177.
[http://dx.doi.org/10.3892/mmr.2019.10357] [PMID: 31173234]
[89]
Zhong, L.; Xu, Z.; Jin, X.; He, Y.; Zhang, J.; Jiang, T.; Chen, J. miR 451a suppression of IL 6R can inhibit proliferation and increase apoptosis through the JAK2/STAT3 pathway in multiple myeloma. Oncol. Lett., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/ol.2020.12202] [PMID: 33123250]
[90]
Xu, L.; Yao, Y.; Lu, T.; Jiang, L. miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates proliferation and apoptosis of multiple myeloma cells. J. Musculoskelet. Neuronal Interact., 2022, 22(2), 251-260.
[PMID: 35642704]
[91]
Thangavelu, B.; Wilfred, B.S.; Johnson, D.; Gilsdorf, J.S.; Shear, D.A.; Boutté, A.M. Penetrating ballistic-like brain injury leads to microRNA dysregulation, BACE1 upregulation, and amyloid precursor protein loss in lesioned rat brain tissues. Front. Neurosci., 2020, 14, 915.
[http://dx.doi.org/10.3389/fnins.2020.00915] [PMID: 33071724]
[92]
Robles, D.; Guo, D.H.; Watson, N.; Asante, D.; Sukumari-Ramesh, S. Dysregulation of serum microRNA after intracerebral hemorrhage in aged mice. Biomedicines, 2023, 11(3), 822.
[http://dx.doi.org/10.3390/biomedicines11030822] [PMID: 36979801]
[93]
Weisz, H.A.; Kennedy, D.; Widen, S.; Spratt, H.; Sell, S.L.; Bailey, C.; Sheffield-Moore, M.; DeWitt, D.S.; Prough, D.S.; Levin, H.; Robertson, C.; Hellmich, H.L. MicroRNA sequencing of rat hippocampus and human biofluids identifies acute, chronic, focal and diffuse traumatic brain injuries. Sci. Rep., 2020, 10(1), 3341.
[http://dx.doi.org/10.1038/s41598-020-60133-z] [PMID: 32094409]
[94]
Shen, J.; Gao, F.; Zhao, L.; Hao, Q.; Yang, Y.L.; Wang, N.N. MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis. Chin. Med. J. (Engl.), 2020, 133(18), 2177-2185.
[http://dx.doi.org/10.1097/CM9.0000000000001022] [PMID: 32826607]
[95]
Tu, Y.; Hu, Y. MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: involvement of anti-apoptotic and anti-inflammatory activities. Metab. Brain Dis., 2021, 36(6), 1341-1351.
[http://dx.doi.org/10.1007/s11011-021-00724-5] [PMID: 33842985]
[96]
Arvola, O.; Griffiths, B.; Rao, A.; Xu, L.; Pastroudis, I.A.; Stary, C.M. Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem. Int., 2021, 149, 105146.
[http://dx.doi.org/10.1016/j.neuint.2021.105146] [PMID: 34343653]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy