Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Cancer is the second leading cause of death globally. Despite some successes,
[1]
Shao, F.; Wang, X.; Wu, H.; Wu, Q.; Zhang, J. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration. Front. Aging Neurosci., 2022, 14, 825086.
[http://dx.doi.org/10.3389/fnagi.2022.825086]
[http://dx.doi.org/10.3389/fnagi.2022.825086]
[2]
Ahluwalia, M.; Gaur, P.; Vaibhav, K. Brain injury and neurodegeneration: molecular, functional, and translational approach. Biomedicines, 2023, 11(7), 1947.
[http://dx.doi.org/10.3390/biomedicines11071947] [PMID: 37509586]
[http://dx.doi.org/10.3390/biomedicines11071947] [PMID: 37509586]
[3]
Brett, B.L.; Gardner, R.C.; Godbout, J.; Dams-O’Connor, K.; Keene, C.D. Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatry, 2022, 91(5), 498-507.
[http://dx.doi.org/10.1016/j.biopsych.2021.05.025] [PMID: 34364650]
[http://dx.doi.org/10.1016/j.biopsych.2021.05.025] [PMID: 34364650]
[4]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human brain injury and mirnas: An experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064195391&doi=10.3390%2Fijms20071546&partnerID=40&md5=e33a639f22c3e66154945309fc0f24df
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[5]
Carvalho, L.B.; dos Santos Sanna, P.L.; dos Santos Afonso, C.C.; Bondan, E.F.; da Silva Feltran, G.; Ferreira, M.R.; Birbrair, A.; Andia, D.C.; Latini, A.; Foganholi da Silva, R.A. MicroRNA biogenesis machinery activation and lncRNA and REST overexpression as neuroprotective responses to fight inflammation in the hippocampus. J. Neuroimmunol., 2023, 382, 578149.
[http://dx.doi.org/10.1016/j.jneuroim.2023.578149] [PMID: 37481910]
[http://dx.doi.org/10.1016/j.jneuroim.2023.578149] [PMID: 37481910]
[6]
Bonin, S.; D’Errico, S.; Medeot, C.; Moreschi, C.; Ciglieri, S.S.; Peruch, M.; Concato, M.; Azzalini, E.; Previderè, C.; Fattorini, P. Evaluation of a set of miRNAs in 26 Cases of fatal traumatic brain injuries. Int. J. Mol. Sci., 2023, 24(13), 10836.
[http://dx.doi.org/10.3390/ijms241310836] [PMID: 37446013]
[http://dx.doi.org/10.3390/ijms241310836] [PMID: 37446013]
[7]
Khatri, N.; Sumadhura, B.; Kumar, S.; Kaundal, R.K.; Sharma, S.; Datusalia, A.K. The complexity of secondary cascade consequent to traumatic brain injury: pathobiology and potential treatments. Curr. Neuropharmacol., 2021, 19(11), 1984-2011.
[http://dx.doi.org/10.2174/1570159X19666210215123914] [PMID: 33588734]
[http://dx.doi.org/10.2174/1570159X19666210215123914] [PMID: 33588734]
[8]
Fesharaki-Zadeh, A. Oxidative stress in traumatic brain injury. Int. J. Mol. Sci., 2022, 23(21), 13000.
[http://dx.doi.org/10.3390/ijms232113000]
[http://dx.doi.org/10.3390/ijms232113000]
[9]
Freire, M.A.M.; Rocha, G.S.; Bittencourt, L.O.; Falcao, D.; Lima, R.R.; Cavalcanti, J.R.L.P. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far? Biology (Basel), 2023, 12(8), 1139.
[http://dx.doi.org/10.3390/biology12081139] [PMID: 37627023]
[http://dx.doi.org/10.3390/biology12081139] [PMID: 37627023]
[10]
Bertozzi, G.; Maglietta, F.; Sessa, F.; Scoto, E.; Cipolloni, L.; Di Mizio, G. Traumatic brain injury: a forensic approach. A literature review. Curr. Neuropharmacol., 2019, 17, 1-13.http://www.eurekaselect.com/node/176333/article
[PMID: 31686630]
[PMID: 31686630]
[11]
Slota, J.A.; Booth, S.A. MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications. Noncoding RNA, 2019, 5(2), 35.
[http://dx.doi.org/10.3390/ncrna5020035] [PMID: 31022830]
[http://dx.doi.org/10.3390/ncrna5020035] [PMID: 31022830]
[12]
Gaytán-Pacheco, N.; Ibáñez-Salazar, A.; Herrera-Van Oostdam, A.S.; Oropeza-Valdez, J.J.; Magaña-Aquino, M.; Adrián López, J.; Monárrez-Espino, J.; López-Hernández, Y. miR-146a, miR-221, and miR-155 are involved in inflammatory immune response in severe COVID-19 patients. Diagnostics (Basel), 2022, 13(1), 133.
[http://dx.doi.org/10.3390/diagnostics13010133] [PMID: 36611425]
[http://dx.doi.org/10.3390/diagnostics13010133] [PMID: 36611425]
[13]
Indrieri, A.; Carrella, S.; Carotenuto, P.; Banfi, S.; Franco, B. The pervasive role of the MiR-181 family in development, neurodegeneration, and cancer. Int. J. Mol. Sci., 2020, 21(6), 2092.
[http://dx.doi.org/10.3390/ijms21062092] [PMID: 32197476]
[http://dx.doi.org/10.3390/ijms21062092] [PMID: 32197476]
[14]
Li, S.; Lei, Z.; Sun, T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol. Toxicol., 2023, 39(1), 53-83.
[http://dx.doi.org/10.1007/s10565-022-09761-x]
[http://dx.doi.org/10.1007/s10565-022-09761-x]
[15]
Gentile, G.; Morello, G.; La Cognata, V.; Guarnaccia, M.; Conforti, F.L.; Cavallaro, S. Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. J. Pers. Med., 2022, 12(5), 770.
[http://dx.doi.org/10.3390/jpm12050770] [PMID: 35629192]
[http://dx.doi.org/10.3390/jpm12050770] [PMID: 35629192]
[16]
Tan, L.; Yu, J.T.; Tan, L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol., 2015, 51(3), 1249-1262.
[http://dx.doi.org/10.1007/s12035-014-8803-9]
[http://dx.doi.org/10.1007/s12035-014-8803-9]
[17]
Kamal, M.; Mushtaq, G.; Greig, N. Current update on synopsis of miRNA dysregulation in neurological disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(4), 492-501.
[http://dx.doi.org/10.2174/1871527314666150225143637] [PMID: 25714967]
[http://dx.doi.org/10.2174/1871527314666150225143637] [PMID: 25714967]
[18]
Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther., 2023, 8(1), 267.
[http://dx.doi.org/10.1038/s41392-023-01486-5]
[http://dx.doi.org/10.1038/s41392-023-01486-5]
[19]
Sessa, F.; Salerno, M.; Esposito, M.; Cocimano, G.; Pisanelli, D.; Malik, A.; Khan, A.A.; Pomara, C. New insight into mechanisms of cardiovascular diseases: An integrative analysis approach to identify TheranoMiRNAs. Int. J. Mol. Sci., 2023, 24(7), 6781.
[http://dx.doi.org/10.3390/ijms24076781] [PMID: 37047756]
[http://dx.doi.org/10.3390/ijms24076781] [PMID: 37047756]
[20]
Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs as biomarkers for diagnosis, Prognosis and theranostics in prostate cancer. Int. J. Mol. Sci., 2016, 17(3), 421.
[http://dx.doi.org/10.3390/ijms17030421] [PMID: 27011184]
[http://dx.doi.org/10.3390/ijms17030421] [PMID: 27011184]
[21]
Xie, G.; Chen, H.; He, C.; Hu, S.; Xiao, X.; Luo, Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct. Integr. Genomics, 2023, 23(3), 287.
[http://dx.doi.org/10.1007/s10142-023-01220-y]
[http://dx.doi.org/10.1007/s10142-023-01220-y]
[22]
Ma, Q.; Zhang, L.; Pearce, W.J. MicroRNAs in brain development and cerebrovascular pathophysiology. Am. J. Physiol. Cell Physiol., 2019, 317(1), C3-C19.
[http://dx.doi.org/10.1152/ajpcell.00022.2019] [PMID: 30840494]
[http://dx.doi.org/10.1152/ajpcell.00022.2019] [PMID: 30840494]
[23]
Di Pietro, V.; Yakoub, K.M.; Scarpa, U.; Di Pietro, C.; Belli, A. MicroRNA signature of traumatic brain injury: From the biomarker discovery to the point-of-care. Front. Neurol., 2018, 9, 429.
[http://dx.doi.org/10.3389/fneur.2018.00429] [PMID: 29963002]
[http://dx.doi.org/10.3389/fneur.2018.00429] [PMID: 29963002]
[24]
Musso, N.; Bivona, D.; Bonomo, C.; Bonacci, P.; D’Ippolito, M.E.; Boccagni, C.; Rubino, F.; De Tanti, A.; Lucca, L.F.; Pingue, V.; Colombo, V.; Estraneo, A.; Stefani, S.; Andriolo, M.; Bagnato, S. Investigating microRNAs as biomarkers in disorders of consciousness: A longitudinal multicenter study. Sci. Rep., 2023, 13(1), 18415.
[http://dx.doi.org/10.1038/s41598-023-45719-7] [PMID: 37891240]
[http://dx.doi.org/10.1038/s41598-023-45719-7] [PMID: 37891240]
[25]
Nazarov, P.V.; Kreis, S. Integrative approaches for analysis of mRNA and microRNA high-throughput data. Comput. Struct. Biotechnol. J., 2021, 19, 1154-1162.
[http://dx.doi.org/10.1016/j.csbj.2021.01.029] [PMID: 33680358]
[http://dx.doi.org/10.1016/j.csbj.2021.01.029] [PMID: 33680358]
[26]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[27]
Maugeri, M.; Barbagallo, D.; Barbagallo, C.; Banelli, B.; Di Mauro, S.; Purrello, F.; Magro, G.; Ragusa, M.; Di Pietro, C.; Romani, M.; Purrello, M. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma. Oncotarget, 2016, 7(50), 83330-83341.
[http://dx.doi.org/10.18632/oncotarget.13090] [PMID: 27829219]
[http://dx.doi.org/10.18632/oncotarget.13090] [PMID: 27829219]
[28]
Saito, Y.; Saito, H. MicroRNAs in cancers and neurodegenerative disorders. Front. Genet., 2012, 3, 194.
[PMID: 23056009]
[PMID: 23056009]
[29]
van Rooij, E.; Kauppinen, S. Development of micro RNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[30]
Shah, S.Z.A.; Zhao, D.; Hussain, T.; Sabir, N.; Yang, L. Regulation of MicroRNAs-mediated autophagic flux: A new regulatory avenue for neurodegenerative diseases with focus on prion diseases. Front. Aging Neurosci., 2018, 10, 139.
[http://dx.doi.org/10.3389/fnagi.2018.00139] [PMID: 29867448]
[http://dx.doi.org/10.3389/fnagi.2018.00139] [PMID: 29867448]
[31]
Santos, D.M. Solá. S.; Steer, C.J.; Rodrigues, C.C.M.P. MiR-34a regulates mouse neural stem cell differentiation. PLoS One, 2011, 6(8), e21396.
[32]
Hu, H.Y.; Guo, S.; Xi, J.; Yan, Z.; Fu, N.; Zhang, X.; Menzel, C.; Liang, H.; Yang, H.; Zhao, M.; Zeng, R.; Chen, W.; Pääbo, S.; Khaitovich, P. MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet., 2011, 7(10), e1002327.
[http://dx.doi.org/10.1371/journal.pgen.1002327] [PMID: 22022286]
[http://dx.doi.org/10.1371/journal.pgen.1002327] [PMID: 22022286]
[33]
de Antonellis, P.; Medaglia, C.; Cusanelli, E.; Andolfo, I.; Liguori, L.; De Vita, G.; Carotenuto, M.; Bello, A.; Formiggini, F.; Galeone, A.; De Rosa, G.; Virgilio, A.; Scognamiglio, I.; Sciro, M.; Basso, G.; Schulte, J.H.; Cinalli, G.; Iolascon, A.; Zollo, M. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One, 2011, 6(9), e24584.
[http://dx.doi.org/10.1371/journal.pone.0024584] [PMID: 21931765]
[http://dx.doi.org/10.1371/journal.pone.0024584] [PMID: 21931765]
[34]
Burgos, K.; Malenica, I.; Metpally, R.; Courtright, A.; Rakela, B.; Beach, T.; Shill, H.; Adler, C.; Sabbagh, M.; Villa, S.; Tembe, W.; Craig, D.; Van Keuren-Jensen, K. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One, 2014, 9(5), e94839.
[http://dx.doi.org/10.1371/journal.pone.0094839] [PMID: 24797360]
[http://dx.doi.org/10.1371/journal.pone.0094839] [PMID: 24797360]
[35]
Podolska, A.; Kaczkowski, B.; Kamp, B.P.; Søkilde, R.; Litman, T.; Fredholm, M.; Cirera, S. MicroRNA expression profiling of the porcine developing brain. PLoS One, 2011, 6(1), e14494.
[http://dx.doi.org/10.1371/journal.pone.0014494] [PMID: 21253018]
[http://dx.doi.org/10.1371/journal.pone.0014494] [PMID: 21253018]
[36]
Zhao, Y.; Ji, S.; Wang, J.; Huang, J.; Zheng, P. mRNA-Seq and microRNA-Seq whole-transcriptome analyses of rhesus monkey embryonic stem cell neural differentiation revealed the potential regulators of rosette neural stem cells. DNA Res., 2014, 21(5), 541-554.
[http://dx.doi.org/10.1093/dnares/dsu019] [PMID: 24939742]
[http://dx.doi.org/10.1093/dnares/dsu019] [PMID: 24939742]
[37]
Garg, N.; Vijayakumar, T.; Bakhshinyan, D.; Venugopal, C.; Singh, S.K. MicroRNA regulation of brain tumour initiating cells in central nervous system tumours. Stem Cells Int., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/141793] [PMID: 26064134]
[http://dx.doi.org/10.1155/2015/141793] [PMID: 26064134]
[38]
Smith, B.; Treadwell, J.; Zhang, D.; Ly, D.; McKinnell, I.; Walker, P.R.; Sikorska, M. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One, 2010, 5(6), e11109.
[http://dx.doi.org/10.1371/journal.pone.0011109] [PMID: 20559549]
[http://dx.doi.org/10.1371/journal.pone.0011109] [PMID: 20559549]
[39]
Stumpfova, Z.; Hezova, R.; Meli, A.C.; Slaby, O.; Michalek, J. MicroRNA profiling of activated and tolerogenic human dendritic cells. Mediators Inflamm., 2014, 2014, 259689.
[http://dx.doi.org/10.1155/2014/259689]
[http://dx.doi.org/10.1155/2014/259689]
[40]
Fuschi, P.; Carrara, M.; Voellenkle, C.; Garcia-Manteiga, J.M.; Righini, P.; Maimone, B.; Sangalli, E.; Villa, F.; Specchia, C.; Picozza, M.; Nano, G.; Gaetano, C.; Spinetti, G.; Puca, A.A.; Magenta, A.; Martelli, F. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY), 2017, 9(12), 2559-2586.
[http://dx.doi.org/10.18632/aging.101341] [PMID: 29242407]
[http://dx.doi.org/10.18632/aging.101341] [PMID: 29242407]
[41]
Chatterjee, P.; Bhattacharyya, M.; Bandyopadhyay, S.; Roy, D. Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS One, 2014, 9(4), e93751.
[http://dx.doi.org/10.1371/journal.pone.0093751] [PMID: 24690883]
[http://dx.doi.org/10.1371/journal.pone.0093751] [PMID: 24690883]
[42]
Saugstad, J.A. Non-coding RNAs in stroke and neuroprotection. Front. Neurol., 2015, 6, 50.
[http://dx.doi.org/10.3389/fneur.2015.00050] [PMID: 25821444]
[http://dx.doi.org/10.3389/fneur.2015.00050] [PMID: 25821444]
[43]
Meza-Sosa, K.F.; Pedraza-Alva, G.; Pérez-Martínez, L. microRNAs: Key triggers of neuronal cell fate. Front. Cell. Neurosci., 2014, 8, 175.
[http://dx.doi.org/10.3389/fncel.2014.00175] [PMID: 25009466]
[http://dx.doi.org/10.3389/fncel.2014.00175] [PMID: 25009466]
[44]
Tian, Y.; Nan, Y.; Han, L.; Zhang, A.; Wang, G.; Jia, Z.; Hao, J.; Pu, P.; Zhong, Y.; Kang, C. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma. Int. J. Oncol., 2012, 40(4), 1105-1112.
[PMID: 22179124]
[PMID: 22179124]
[45]
Bhomia, M.; Balakathiresan, N.S.; Wang, K.K.; Papa, L.; Maheshwari, R.K. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci. Rep., 2016, 6(1), 28148.
[http://dx.doi.org/10.1038/srep28148] [PMID: 27338832]
[http://dx.doi.org/10.1038/srep28148] [PMID: 27338832]
[46]
Ren, Y.; Zhou, X.; Mei, M.; Yuan, X.B.; Han, L.; Wang, G.X.; Jia, Z.F.; Xu, P.; Pu, P.Y.; Kang, C.S. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer, 2010, 10(1), 27.
[http://dx.doi.org/10.1186/1471-2407-10-27] [PMID: 20113523]
[http://dx.doi.org/10.1186/1471-2407-10-27] [PMID: 20113523]
[47]
Maes, O.; Chertkow, H.; Wang, E.; Schipper, H. MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Curr. Genomics, 2009, 10(3), 154-168.
[http://dx.doi.org/10.2174/138920209788185252] [PMID: 19881909]
[http://dx.doi.org/10.2174/138920209788185252] [PMID: 19881909]
[48]
McKiernan, R.C.; Jimenez-Mateos, E.M.; Bray, I.; Engel, T.; Brennan, G.P.; Sano, T.; Michalak, Z.; Moran, C.; Delanty, N.; Farrell, M.; O’Brien, D.; Meller, R.; Simon, R.P.; Stallings, R.L.; Henshall, D.C. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One, 2012, 7(5), e35921.
[http://dx.doi.org/10.1371/journal.pone.0035921] [PMID: 22615744]
[http://dx.doi.org/10.1371/journal.pone.0035921] [PMID: 22615744]
[49]
Bai, X.; Zheng, L.; Xu, Y.; Liang, Y.; Li, D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int., 2022, 22(1), 381.
[http://dx.doi.org/10.1186/s12935-022-02797-3]
[http://dx.doi.org/10.1186/s12935-022-02797-3]
[50]
Desole, C.; Gallo, S.; Vitacolonna, A.; Montarolo, F.; Bertolotto, A.; Vivien, D.; Comoglio, P.; Crepaldi, T. HGF and MET: From brain development to neurological disorders. Front. Cell Dev. Biol., 2021, 9, 683609.
[http://dx.doi.org/10.3389/fcell.2021.683609] [PMID: 34179015]
[http://dx.doi.org/10.3389/fcell.2021.683609] [PMID: 34179015]
[51]
Ransohoff, R.M.; Schafer, D.; Vincent, A.; Blachère, N.E.; Bar-Or, A. Neuroinflammation: Ways in which the immune system affects the brain. Neurotherapeutics, 2015, 12(4), 896-909.
[http://dx.doi.org/10.1007/s13311-015-0385-3] [PMID: 26306439]
[http://dx.doi.org/10.1007/s13311-015-0385-3] [PMID: 26306439]
[52]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: the devil is in the details. J. Neurochem., 2016, 139(S2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[54]
Li, Y.J.; Du, L.; Aldana-Masangkay, G.; Wang, X.; Urak, R.; Forman, S.J.; Rosen, S.T.; Chen, Y. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res., 2018, 46(14), 7108-7123.
[http://dx.doi.org/10.1093/nar/gky484] [PMID: 29893976]
[http://dx.doi.org/10.1093/nar/gky484] [PMID: 29893976]
[55]
Olejniczak, M.; Kotowska-Zimmer, A.; Krzyzosiak, W. Stress-induced changes in miRNA biogenesis and functioning. Cell. Mol. Life Sci., 2018, 75(2), 177-191.
[http://dx.doi.org/10.1007/s00018-017-2591-0] [PMID: 28717872]
[http://dx.doi.org/10.1007/s00018-017-2591-0] [PMID: 28717872]
[56]
Sarkar, S.N.; Russell, A.E.; Engler-Chiurazzi, E.B.; Porter, K.N.; Simpkins, J.W. MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis., 2019, 10(2), 329-352.
[http://dx.doi.org/10.14336/AD.2018.0409] [PMID: 31011481]
[http://dx.doi.org/10.14336/AD.2018.0409] [PMID: 31011481]
[57]
Garcia-Martínez, I.; Sánchez-Mora, C.; Pagerols, M.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Cormand, B.; Casas, M.; Ramos-Quiroga, J.A.; Ribasés, M. Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Transl. Psychiatry, 2016, 6(8), e879.
[http://dx.doi.org/10.1038/tp.2016.151] [PMID: 27576168]
[http://dx.doi.org/10.1038/tp.2016.151] [PMID: 27576168]
[58]
Kapoor, A.; Nation, D.A. Role of Notch signaling in neurovascular aging and Alzheimer’s disease. Semin. Cell Dev. Biol., 2021, 116, 90-97.
[http://dx.doi.org/10.1016/j.semcdb.2020.12.011] [PMID: 33384205]
[http://dx.doi.org/10.1016/j.semcdb.2020.12.011] [PMID: 33384205]
[59]
Akil, A.; Gutiérrez-García, A.K.; Guenter, R.; Rose, J.B.; Beck, A.W.; Chen, H.; Ren, B. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: An update and prospective. Front. Cell Dev. Biol., 2021, 9, 642352.
[http://dx.doi.org/10.3389/fcell.2021.642352] [PMID: 33681228]
[http://dx.doi.org/10.3389/fcell.2021.642352] [PMID: 33681228]
[60]
Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 53.
[http://dx.doi.org/10.1186/s13046-019-1059-5]
[http://dx.doi.org/10.1186/s13046-019-1059-5]
[61]
Siebel, C.; Lendahl, U. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev., 2017, 97(4), 1235-1294.
[http://dx.doi.org/10.1152/physrev.00005.2017] [PMID: 28794168]
[http://dx.doi.org/10.1152/physrev.00005.2017] [PMID: 28794168]
[62]
Fang, L.; Sun, B.; Huang, L.; Yuan, H.; Zhang, S.; Chen, J.; Yu, Z.; Luo, H. Potent inhibition of miR-34b on migration and invasion in metastatic prostate cancer cells by regulating the TGF-β pathway. Int. J. Mol. Sci., 2017, 18(12), 2762.
[http://dx.doi.org/10.3390/ijms18122762] [PMID: 29257105]
[http://dx.doi.org/10.3390/ijms18122762] [PMID: 29257105]
[63]
Hiew, L.F.; Poon, C.H.; You, H.Z.; Lim, L.W. Tgf‐β/smad signalling in neurogenesis: Implications for neuropsychiatric diseases. Cells, 2021, 10(6), 1382.
[http://dx.doi.org/10.3390/cells10061382] [PMID: 34205102]
[http://dx.doi.org/10.3390/cells10061382] [PMID: 34205102]
[64]
Shi, J.; Hao, A.; Zhang, Q.; Sui, G. The role of YY1 in oncogenesis and its potential as a drug target in cancer therapies. Curr. Cancer Drug Targets, 2015, 15(2), 145-157.
[http://dx.doi.org/10.2174/1568009615666150131124200] [PMID: 25817371]
[http://dx.doi.org/10.2174/1568009615666150131124200] [PMID: 25817371]
[65]
Farahzadi, R.; Valipour, B.; Fathi, E.; Pirmoradi, S.; Molavi, O.; Montazersaheb, S.; Sanaat, Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res. Ther., 2023, 14(1), 342.
[http://dx.doi.org/10.1186/s13287-023-03571-6] [PMID: 38017510]
[http://dx.doi.org/10.1186/s13287-023-03571-6] [PMID: 38017510]
[66]
Jacques, C.; Tesfaye, R.; Lavaud, M.; Georges, S.; Baud’huin, M.; Lamoureux, F.; Ory, B. Implication of the p53-related miR-34c,] -125b, and -203 in the osteoblastic differentiation and the malignant transformation of bone sarcomas. Cells, 2020, 9(4), 810.
[http://dx.doi.org/10.3390/cells9040810] [PMID: 32230926]
[http://dx.doi.org/10.3390/cells9040810] [PMID: 32230926]
[67]
Fu, J.; Imani, S.; Wu, M.Y.; Wu, R.C. MicroRNA-34 family in cancers: role, mechanism, and therapeutic potential. Cancers (Basel), 2023, 15(19), 4723.
[http://dx.doi.org/10.3390/cancers15194723] [PMID: 37835417]
[http://dx.doi.org/10.3390/cancers15194723] [PMID: 37835417]
[68]
Shen, Z.G.; Liu, X.Z.; Chen, C.X.; Lu, J.M. Knockdown of E2F3 inhibits proliferation, migration, and invasion and increases apoptosis in glioma cells. Oncol. Res., 2017, 25(9), 1555-1566.
[http://dx.doi.org/10.3727/096504017X14897158009178] [PMID: 28337965]
[http://dx.doi.org/10.3727/096504017X14897158009178] [PMID: 28337965]
[69]
Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Dong, P.; Gassler, N.; Taheri, M.; Baniahmad, A.; Dilmaghani, N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int., 2022, 22(1), 325.
[http://dx.doi.org/10.1186/s12935-022-02747-z]
[http://dx.doi.org/10.1186/s12935-022-02747-z]
[70]
Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B, 2021, 11(1), 30-54.
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[71]
Zhou, Y.L.; Xu, Y.J.; Qiao, C.W. MiR-34c-3p suppresses the proliferation and invasion of non-small cell lung cancer (NSCLC) by inhibiting PAC1/MAPK pathway. Int J Clin Exp Pathol., 2015, 8.
[72]
Cannell, I.; Bushell, M. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle, 2010, 9(14), 2798-2802.
[http://dx.doi.org/10.4161/cc.9.14.12182] [PMID: 20603603]
[http://dx.doi.org/10.4161/cc.9.14.12182] [PMID: 20603603]
[73]
Kadkhoda, S.; Eslami, S.; Mahmud Hussen, B.; Ghafouri-Fard, S. A review on the importance of miRNA-135 in human diseases. Front. Genet., 2022, 13, 973585.
[http://dx.doi.org/10.3389/fgene.2022.973585]
[http://dx.doi.org/10.3389/fgene.2022.973585]
[74]
Hutter, S.; Bolin, S.; Weishaupt, H.; Swartling, F. Modeling and targeting MYC genes in childhood brain tumors. Genes (Basel), 2017, 8(4), 107.
[http://dx.doi.org/10.3390/genes8040107] [PMID: 28333115]
[http://dx.doi.org/10.3390/genes8040107] [PMID: 28333115]
[75]
Tregub, P.P.; Ibrahimli, I.; Averchuk, A.S.; Salmina, A.B.; Litvitskiy, P.F.; Manasova, Z.S.; Popova, I.A. The role of microRNAs in epigenetic regulation of signaling pathways in neurological pathologies. Int. J. Mol. Sci., 2023, 24(16), 12899.
[http://dx.doi.org/10.3390/ijms241612899] [PMID: 37629078]
[http://dx.doi.org/10.3390/ijms241612899] [PMID: 37629078]
[76]
Guan, T.; Dominguez, C.X.; Amezquita, R.A.; Laidlaw, B.J.; Cheng, J.; Henao-Mejia, J.; Williams, A.; Flavell, R.A.; Lu, J.; Kaech, S.M. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. J. Exp. Med., 2018, 215(4), 1153-1168.
[http://dx.doi.org/10.1084/jem.20171352] [PMID: 29449309]
[http://dx.doi.org/10.1084/jem.20171352] [PMID: 29449309]
[77]
Burk, U.; Schubert, J.; Wellner, U.; Schmalhofer, O.; Vincan, E.; Spaderna, S.; Brabletz, T. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells. EMBO Rep., 2008, 9(6), 582-589.
[http://dx.doi.org/10.1038/embor.2008.74] [PMID: 18483486]
[http://dx.doi.org/10.1038/embor.2008.74] [PMID: 18483486]
[78]
Poonaki, E.; Kahlert, U.D.; Meuth, S.G.; Gorji, A. The role of the ZEB1-neuroinflammation axis in CNS disorders. J. Neuroinflammation, 2022, 19(1), 275.
[http://dx.doi.org/10.1186/s12974-022-02636-2] [PMID: 36402997]
[http://dx.doi.org/10.1186/s12974-022-02636-2] [PMID: 36402997]
[79]
Leskelä, S.; Leandro-García, L.J.; Mendiola, M.; Barriuso, J.; Inglada-Pérez, L.; Muñoz, I.; Martínez-Delgado, B.; Redondo, A.; de Santiago, J.; Robledo, M.; Hardisson, D.; Rodríguez-Antona, C. The miR-200 family controls-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr. Relat. Cancer, 2010, 18(1), 85-95.
[http://dx.doi.org/10.1677/ERC-10-0148] [PMID: 21051560]
[http://dx.doi.org/10.1677/ERC-10-0148] [PMID: 21051560]
[80]
Kozak, J.; Jonak, K.; Maciejewski, R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed. Pharmacother., 2020, 125, 110037.
[http://dx.doi.org/10.1016/j.biopha.2020.110037] [PMID: 32187964]
[http://dx.doi.org/10.1016/j.biopha.2020.110037] [PMID: 32187964]
[81]
Drápela, S.; Bouchal, J.; Jolly, M.K.; Culig, Z.; Souček, K. ZEB1: A critical regulator of cell plasticity, DNA damage response, and therapy resistance. Front. Mol. Biosci., 2020, 7, 36.
[http://dx.doi.org/10.3389/fmolb.2020.00036] [PMID: 32266287]
[http://dx.doi.org/10.3389/fmolb.2020.00036] [PMID: 32266287]
[82]
Sundararajan, V.; Burk, U.C.; Bajdak-Rusinek, K. Revisiting the miR-200 Family: A clan of five siblings with essential roles in development and disease. Biomolecules, 2022, 12(6), 781.
[http://dx.doi.org/10.3390/biom12060781] [PMID: 35740906]
[http://dx.doi.org/10.3390/biom12060781] [PMID: 35740906]
[83]
Huang, Z.; Zhang, Z.; Zhou, C.; Liu, L.; Huang, C. Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm, 2022, 3(2), e144.
[http://dx.doi.org/10.1002/mco2.144]
[http://dx.doi.org/10.1002/mco2.144]
[84]
Rashidi, S.K.; Kalirad, A.; Rafie, S.; Behzad, E.; Dezfouli, M.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front. Mol. Neurosci., 2023, 16, 1226413.
[http://dx.doi.org/10.3389/fnmol.2023.1226413] [PMID: 37727513]
[http://dx.doi.org/10.3389/fnmol.2023.1226413] [PMID: 37727513]
[85]
Madathil, S.K.; Saatman, K.E. IGF-1/IGF-R signaling in traumatic brain injury: Impact on cell survival, neurogenesis, and behavioral outcome. In: Brain Neurotrauma; Molecular, Neuropsychological, and Rehabilitation Aspects, 2015; pp. 61-78.
[86]
Stary, C.M.; Xu, L.; Sun, X.; Ouyang, Y.B.; White, R.E.; Leong, J.; Li, J.; Xiong, X.; Giffard, R.G. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke, 2015, 46(2), 551-556.
[http://dx.doi.org/10.1161/STROKEAHA.114.007041] [PMID: 25604249]
[http://dx.doi.org/10.1161/STROKEAHA.114.007041] [PMID: 25604249]
[87]
Sadeghi, M.S. lotfi, M.; Soltani, N.; Farmani, E.; Fernandez, J.H.O.; Akhlaghitehrani, S.; Mohammed, S.H.; Yasamineh, S.; Kalajahi, H.G.; Gholizadeh, O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int., 2023, 23(1), 284.
[http://dx.doi.org/10.1186/s12935-023-03133-z] [PMID: 37986065]
[http://dx.doi.org/10.1186/s12935-023-03133-z] [PMID: 37986065]
[88]
Li, Q.; Li, Y.; Zhang, D.; Gao, H.; Gao, X. Downregulation of microRNA 451 improves cell migration, invasion and tube formation in hypoxia treated HUVECs by targeting MIF. Mol. Med. Rep., 2019, 20(2), 1167-1177.
[http://dx.doi.org/10.3892/mmr.2019.10357] [PMID: 31173234]
[http://dx.doi.org/10.3892/mmr.2019.10357] [PMID: 31173234]
[89]
Zhong, L.; Xu, Z.; Jin, X.; He, Y.; Zhang, J.; Jiang, T.; Chen, J. miR 451a suppression of IL 6R can inhibit proliferation and increase apoptosis through the JAK2/STAT3 pathway in multiple myeloma. Oncol. Lett., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/ol.2020.12202] [PMID: 33123250]
[http://dx.doi.org/10.3892/ol.2020.12202] [PMID: 33123250]
[90]
Xu, L.; Yao, Y.; Lu, T.; Jiang, L. miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates proliferation and apoptosis of multiple myeloma cells. J. Musculoskelet. Neuronal Interact., 2022, 22(2), 251-260.
[PMID: 35642704]
[PMID: 35642704]
[91]
Thangavelu, B.; Wilfred, B.S.; Johnson, D.; Gilsdorf, J.S.; Shear, D.A.; Boutté, A.M. Penetrating ballistic-like brain injury leads to microRNA dysregulation, BACE1 upregulation, and amyloid precursor protein loss in lesioned rat brain tissues. Front. Neurosci., 2020, 14, 915.
[http://dx.doi.org/10.3389/fnins.2020.00915] [PMID: 33071724]
[http://dx.doi.org/10.3389/fnins.2020.00915] [PMID: 33071724]
[92]
Robles, D.; Guo, D.H.; Watson, N.; Asante, D.; Sukumari-Ramesh, S. Dysregulation of serum microRNA after intracerebral hemorrhage in aged mice. Biomedicines, 2023, 11(3), 822.
[http://dx.doi.org/10.3390/biomedicines11030822] [PMID: 36979801]
[http://dx.doi.org/10.3390/biomedicines11030822] [PMID: 36979801]
[93]
Weisz, H.A.; Kennedy, D.; Widen, S.; Spratt, H.; Sell, S.L.; Bailey, C.; Sheffield-Moore, M.; DeWitt, D.S.; Prough, D.S.; Levin, H.; Robertson, C.; Hellmich, H.L. MicroRNA sequencing of rat hippocampus and human biofluids identifies acute, chronic, focal and diffuse traumatic brain injuries. Sci. Rep., 2020, 10(1), 3341.
[http://dx.doi.org/10.1038/s41598-020-60133-z] [PMID: 32094409]
[http://dx.doi.org/10.1038/s41598-020-60133-z] [PMID: 32094409]
[94]
Shen, J.; Gao, F.; Zhao, L.; Hao, Q.; Yang, Y.L.; Wang, N.N. MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis. Chin. Med. J. (Engl.), 2020, 133(18), 2177-2185.
[http://dx.doi.org/10.1097/CM9.0000000000001022] [PMID: 32826607]
[http://dx.doi.org/10.1097/CM9.0000000000001022] [PMID: 32826607]
[95]
Tu, Y.; Hu, Y. MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: involvement of anti-apoptotic and anti-inflammatory activities. Metab. Brain Dis., 2021, 36(6), 1341-1351.
[http://dx.doi.org/10.1007/s11011-021-00724-5] [PMID: 33842985]
[http://dx.doi.org/10.1007/s11011-021-00724-5] [PMID: 33842985]
[96]
Arvola, O.; Griffiths, B.; Rao, A.; Xu, L.; Pastroudis, I.A.; Stary, C.M. Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem. Int., 2021, 149, 105146.
[http://dx.doi.org/10.1016/j.neuint.2021.105146] [PMID: 34343653]
[http://dx.doi.org/10.1016/j.neuint.2021.105146] [PMID: 34343653]