Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of Intracellular and Extracellular Vesicles in the Development of Therapy Resistance in Cancer

In Press, (this is not the final "Version of Record"). Available online 07 August, 2024
Author(s): Magdalena Wilczak, Magdalena Surman and Małgorzata Przybyło*
Published on: 07 August, 2024

DOI: 10.2174/0113816128326325240723051625

Price: $95

Abstract

Cancer is the second leading cause of global mortality and claims approximately 10 million lives annually. Despite advances in treatments such as surgery, chemotherapy, and immunotherapy, resistance to these methods has emerged. Multidrug resistance (MDR), where cancer cells resist diverse treatments, undermines therapy effectiveness, escalating mortality rates. MDR mechanisms include, among others, drug inactivation, reduced drug uptake, enhanced DNA repair, and activation of survival pathways such as autophagy. Moreover, MDR mechanisms can confer resistance to other therapies like radiotherapy. Understanding these mechanisms is crucial for improving treatment efficacy and identifying new therapeutic targets. Extracellular vesicles (EVs) have gathered attention for their role in cancer progression, including MDR development through protein transfer and genetic reprogramming. Autophagy, a process balancing cellular resources, also influences MDR. The intersection of EVs and autophagy further complicates the understanding of MDR. Both extracellular (exosomes, microvesicles) and intracellular (autophagic) vesicles contribute to therapy resistance by regulating the tumor microenvironment, facilitating cell communication, and modulating drug processing. While much is known about these pathways, there is still a need to explore their potential for predicting treatment responses and understanding tumor heterogeneity.

[1]
Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1204-22.
[http://dx.doi.org/10.1016/S0140-6736(20)30925-9] [PMID: 33069326]
[2]
Lei ZN, Tian Q, Teng QX, et al. Understanding and targeting resistance mechanisms in cancer. MedComm 2023; 4(3): e265.
[http://dx.doi.org/10.1002/mco2.265] [PMID: 37229486]
[3]
Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv Sci (Weinh) 2016; 3(11): 1600134.
[http://dx.doi.org/10.1002/advs.201600134] [PMID: 27980988]
[4]
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1866-79.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[5]
Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019; 1872(2): 188310.
[http://dx.doi.org/10.1016/j.bbcan.2019.188310] [PMID: 31442474]
[6]
Dudás J, Ladányi A, Ingruber J, Steinbichler TB, Riechelmann H. Epithelial to mesenchymal transition: A mechanism that fuels cancer radio/chemoresistance. Cells 2020; 9(2): 428.
[http://dx.doi.org/10.3390/cells9020428] [PMID: 32059478]
[7]
Rahmanian M, Seyfoori A, Ghasemi M, et al. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release 2021; 334: 164-77.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.024] [PMID: 33895200]
[8]
Tan H, Zhang M, Wang Y, et al. Innovative nanochemotherapy for overcoming cancer multidrug resistance. Nanotechnology 2022; 33(5): 052001.
[http://dx.doi.org/10.1088/1361-6528/ac3355] [PMID: 34700307]
[9]
Pljesa-Ercegovac M, Savic-Radojevic A, Matic M, et al. Glutathione transferases: Potential targets to overcome chemoresistance in solid tumors. Int J Mol Sci 2018; 19(12): 3785.
[http://dx.doi.org/10.3390/ijms19123785] [PMID: 30487385]
[10]
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020; 21(9): 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[11]
Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics 2018; 8(4): 1059-74.
[http://dx.doi.org/10.7150/thno.22679] [PMID: 29463999]
[12]
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235: 116825.
[http://dx.doi.org/10.1016/j.lfs.2019.116825] [PMID: 31494169]
[13]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[14]
Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2020; 51: 102610.
[http://dx.doi.org/10.1016/j.ebiom.2019.102610] [PMID: 31918403]
[15]
Mir SA, Hamid L, Bader GN, et al. Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review. Molecules 2022; 27(19): 6608.
[http://dx.doi.org/10.3390/molecules27196608] [PMID: 36235145]
[16]
Vaidya FU, Sufiyan Chhipa A, Mishra V, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep 2022; 5(12): e1291.
[http://dx.doi.org/10.1002/cnr2.1291] [PMID: 33052041]
[17]
Bueschbell B, Caniceiro AB, Suzano PMS, Machuqueiro M, Rosário-Ferreira N, Moreira IS. Network biology and artificial intelligence drive the understanding of the multidrug resistance phenotype in cancer. Drug Resist Updat 2022; 60: 100811.
[http://dx.doi.org/10.1016/j.drup.2022.100811] [PMID: 35121338]
[18]
Gong J, Shi T, Liu J, et al. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161: 114505.
[http://dx.doi.org/10.1016/j.biopha.2023.114505] [PMID: 36921532]
[19]
Li Z, Yin P. Tumor microenvironment diversity and plasticity in cancer multidrug resistance. Biochim Biophys Acta Rev Cancer 2023; 1878(6): 188997.
[http://dx.doi.org/10.1016/j.bbcan.2023.188997] [PMID: 37832894]
[20]
Yalcin-Ozkat G. Molecular modeling strategies of cancer multidrug resistance. Drug Resist Updat 2021; 59: 100789.
[http://dx.doi.org/10.1016/j.drup.2021.100789] [PMID: 34973929]
[21]
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021; 13(5): e1715.
[http://dx.doi.org/10.1002/wnan.1715] [PMID: 33860622]
[22]
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti- multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29(1): 1684-97.
[http://dx.doi.org/10.1080/10717544.2022.2079771] [PMID: 35616278]
[23]
Xu Y, Feng K, Zhao H, Di L, Wang L, Wang R. Tumor-derived extracellular vesicles as messengers of natural products in cancer treatment. Theranostics 2022; 12(4): 1683-714.
[http://dx.doi.org/10.7150/thno.67775] [PMID: 35198064]
[24]
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal 2023; 21(1): 150.
[http://dx.doi.org/10.1186/s12964-023-01111-6] [PMID: 37349803]
[25]
Yang Q, Xu J, Gu J, et al. Extracellular vesicles in cancer drug resistance: Roles, mechanisms, and implications. Adv Sci (Weinh) 2022; 9(34): 2201609.
[http://dx.doi.org/10.1002/advs.202201609] [PMID: 36253096]
[26]
Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular vesicles: Emerging modulators of cancer drug resistance. Cancers (Basel) 2021; 13(4): 749.
[http://dx.doi.org/10.3390/cancers13040749] [PMID: 33670185]
[27]
Yekula A, Taylor A, Beecroft A, et al. The role of extracellular vesicles in acquisition of resistance to therapy in glioblastomas. Cancer Drug Resist 2020; 4(1): 1-16.
[http://dx.doi.org/10.20517/cdr.2020.61] [PMID: 35582008]
[28]
Shetty AK, Upadhya R. Extracellular vesicles in health and disease. Aging Dis 2021; 12(6): 1358-62.
[http://dx.doi.org/10.14336/AD.2021.0827] [PMID: 34527414]
[29]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[30]
Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular vesicles: New classification and tumor immunosuppression. Biology (Basel) 2023; 12(1): 110.
[http://dx.doi.org/10.3390/biology12010110] [PMID: 36671802]
[31]
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12(1): 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[32]
Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016; 113(8): E968-77.
[http://dx.doi.org/10.1073/pnas.1521230113] [PMID: 26858453]
[33]
Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19(22): 1875-85.
[http://dx.doi.org/10.1016/j.cub.2009.09.059] [PMID: 19896381]
[34]
Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4(1): 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[35]
Sedgwick AE, D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic 2018; 19(5): 319-27.
[http://dx.doi.org/10.1111/tra.12558] [PMID: 29479795]
[36]
Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 2011; 44(5): 698-709.
[http://dx.doi.org/10.1016/j.molcel.2011.10.014] [PMID: 22152474]
[37]
Xi H, Wang S, Wang B, et al. The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Rep 2022; 48(6): 208.
[http://dx.doi.org/10.3892/or.2022.8423] [PMID: 36222296]
[38]
Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer. Dev Cell 2021; 56(7): 906-18.
[http://dx.doi.org/10.1016/j.devcel.2021.02.010] [PMID: 33689692]
[39]
Ju Y, Bai H, Ren L, Zhang L. The role of exosome and the ESCRT pathway on enveloped virus infection. Int J Mol Sci 2021; 22(16): 9060.
[http://dx.doi.org/10.3390/ijms22169060] [PMID: 34445766]
[40]
Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: Endosomal functions and beyond. Semin Cell Dev Biol 2018; 74: 21-8.
[http://dx.doi.org/10.1016/j.semcdb.2017.08.014] [PMID: 28807884]
[41]
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell 2019; 177(2): 428-445.e18.
[http://dx.doi.org/10.1016/j.cell.2019.02.029] [PMID: 30951670]
[42]
Bebawy M, Combes V, Lee E, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 2009; 23(9): 1643-9.
[http://dx.doi.org/10.1038/leu.2009.76] [PMID: 19369960]
[43]
Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One 2012; 7(12): e50999.
[http://dx.doi.org/10.1371/journal.pone.0050999] [PMID: 23251413]
[44]
Zhang F, Zhu Y, Zhao Q, et al. Microvesicles mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780 human ovarian cancer cells, conferring paclitaxel-resistance. Eur J Pharmacol 2014; 738: 83-90.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.026] [PMID: 24877693]
[45]
Torreggiani E, Roncuzzi L, Perut F, Zini N, Baldini N. Multimodal transfer of MDR by exosomes in human osteosarcoma. Int J Oncol 2016; 49(1): 189-96.
[http://dx.doi.org/10.3892/ijo.2016.3509] [PMID: 27176642]
[46]
Lu JF, Luk F, Gong J, Jaiswal R, Grau GER, Bebawy M. Microparticles mediate MRP1 intercellular transfer and the re-templating of intrinsic resistance pathways. Pharmacol Res 2013; 76: 77-83.
[http://dx.doi.org/10.1016/j.phrs.2013.07.009] [PMID: 23917219]
[47]
Pokharel D, Padula M, Lu J, Jaiswal R, Djordjevic S, Bebawy M. The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells. Molecules 2016; 21(3): 290.
[http://dx.doi.org/10.3390/molecules21030290] [PMID: 26938523]
[48]
Ma X, Chen Z, Hua D, et al. Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc Natl Acad Sci USA 2014; 111(17): 6389-94.
[http://dx.doi.org/10.1073/pnas.1400272111] [PMID: 24733904]
[49]
Bhattacharya S, Pal K, Sharma AK, et al. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways. PLoS One 2014; 9(12): e114409.
[http://dx.doi.org/10.1371/journal.pone.0114409] [PMID: 25469510]
[50]
Maloney DG, Liles TM, Czerwinski DK, et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B- cell lymphoma. Blood 1994; 84(8): 2457-66.
[http://dx.doi.org/10.1182/blood.V84.8.2457.2457] [PMID: 7522629]
[51]
Aung T, Chapuy B, Vogel D, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci USA 2011; 108(37): 15336-41.
[http://dx.doi.org/10.1073/pnas.1102855108] [PMID: 21873242]
[52]
Battke C, Ruiss R, Welsch U, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother 2011; 60(5): 639-48.
[http://dx.doi.org/10.1007/s00262-011-0979-5] [PMID: 21293856]
[53]
Ciravolo V, Huber V, Ghedini GC, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012; 227(2): 658-67.
[http://dx.doi.org/10.1002/jcp.22773] [PMID: 21465472]
[54]
Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010; 376(9742): 687-97.
[http://dx.doi.org/10.1016/S0140-6736(10)61121-X] [PMID: 20728210]
[55]
Barok M, Puhka M, Yazdi N, Joensuu H. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. J Extracell Vesicles 2021; 10(4): e12070.
[http://dx.doi.org/10.1002/jev2.12070] [PMID: 33613875]
[56]
Hansen HP, Trad A, Dams M, et al. CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, in vitro. Oncotarget 2016; 7(21): 30523-35.
[http://dx.doi.org/10.18632/oncotarget.8864] [PMID: 27105521]
[57]
Barok M, Puhka M, Vereb G, Szollosi J, Isola J, Joensuu H. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer 2018; 18(1): 504.
[http://dx.doi.org/10.1186/s12885-018-4418-2] [PMID: 29720111]
[58]
Goss GD, Vokes EE, Gordon MS, et al. Efficacy and safety results of depatuxizumab mafodotin (ABT-414) in patients with advanced solid tumors likely to overexpress epidermal growth factor receptor. Cancer 2018; 124(10): 2174-83.
[http://dx.doi.org/10.1002/cncr.31304] [PMID: 29533458]
[59]
Ozawa PMM, Alkhilaiwi F, Cavalli IJ, Malheiros D, de Souza Fonseca Ribeiro EM, Cavalli LR. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat 2018; 172(3): 713-23.
[http://dx.doi.org/10.1007/s10549-018-4925-5] [PMID: 30173296]
[60]
Wei Y, Lai X, Yu S, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 2014; 147(2): 423-31.
[http://dx.doi.org/10.1007/s10549-014-3037-0] [PMID: 25007959]
[61]
Sousa D, Lima RT, Vasconcelos MH. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol Med 2015; 21(10): 595-608.
[http://dx.doi.org/10.1016/j.molmed.2015.08.002] [PMID: 26432017]
[62]
Kwok HH, Ning Z, Chong PWC, et al. Transfer of extracellular vesicle-associated-RNAs induces drug resistance in ALK-translocated lung adenocarcinoma. Cancers (Basel) 2019; 11(1): 104.
[http://dx.doi.org/10.3390/cancers11010104] [PMID: 30658414]
[63]
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 2019; 38(1): 166.
[http://dx.doi.org/10.1186/s13046-019-1139-6] [PMID: 30992025]
[64]
Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci USA 2017; 114(43): E9066-75.
[http://dx.doi.org/10.1073/pnas.1704862114] [PMID: 29073103]
[65]
Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Cancer Res 2003; 63(15): 4331-7.
[PMID: 12907600]
[66]
Musi A, Bongiovanni L. Extracellular vesicles in cancer drug resistance: Implications on melanoma therapy. Cancers (Basel) 2023; 15(4): 1074.
[http://dx.doi.org/10.3390/cancers15041074] [PMID: 36831417]
[67]
Setroikromo R, Zhang B, Reis CR, Mistry RH, Quax WJ. Death receptor 5 displayed on extracellular vesicles decreases trail sensitivity of colon cancer cells. Front Cell Dev Biol 2020; 8: 318.
[http://dx.doi.org/10.3389/fcell.2020.00318] [PMID: 32509779]
[68]
Chen VY, Posada MM, Blazer LL, Zhao T, Rosania GR. The role of the VPS4A-exosome pathway in the intrinsic egress route of a DNA-binding anticancer drug. Pharm Res 2006; 23(8): 1687-95.
[http://dx.doi.org/10.1007/s11095-006-9043-0] [PMID: 16841193]
[69]
Li R, Dong C, Jiang K, et al. Rab27B enhances drug resistance in hepatocellular carcinoma by promoting exosome-mediated drug efflux. Carcinogenesis 2020; 41(11): 1583-91.
[http://dx.doi.org/10.1093/carcin/bgaa029] [PMID: 32390047]
[70]
Li Z, Fang R, Fang J, He S, Liu T. Functional implications of Rab27 GTPases in cancer. Cell Commun Signal 2018; 16(1): 44.
[http://dx.doi.org/10.1186/s12964-018-0255-9] [PMID: 30081925]
[71]
Pecqueux M, Wende B, Sommer U, et al. RAB27B expression in pancreatic cancer is predictive of poor survival but good response to chemotherapy. Cancer Biomark 2023; 37(4): 207-15.
[http://dx.doi.org/10.3233/CBM-220460] [PMID: 37248891]
[72]
Federici C, Petrucci F, Caimi S, et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 2014; 9(2): e88193.
[http://dx.doi.org/10.1371/journal.pone.0088193] [PMID: 24516610]
[73]
Safaei R, Larson BJ, Cheng TC, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005; 4(10): 1595-604.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0102] [PMID: 16227410]
[74]
Khoo XH, Paterson IC, Goh BH, Lee WL. Cisplatin-resistance in oral squamous cell carcinoma: Regulation by tumor cell-derived extracellular vesicles. Cancers (Basel) 2019; 11(8): 1166.
[http://dx.doi.org/10.3390/cancers11081166] [PMID: 31416147]
[75]
Ifergan I, Scheffer GL, Assaraf YG. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res 2005; 65(23): 10952-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2021] [PMID: 16322243]
[76]
Andrade LNS, Otake AH, Cardim SGB, et al. Extracellular vesicles shedding promotes melanoma growth in response to chemotherapy. Sci Rep 2019; 9(1): 14482.
[http://dx.doi.org/10.1038/s41598-019-50848-z] [PMID: 31597943]
[77]
Maacha S, Bhat AA, Jimenez L, et al. Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18(1): 55.
[http://dx.doi.org/10.1186/s12943-019-0965-7] [PMID: 30925923]
[78]
Andreola G, Rivoltini L, Castelli C, et al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 2002; 195(10): 1303-16.
[http://dx.doi.org/10.1084/jem.20011624] [PMID: 12021310]
[79]
Abusamra AJ, Zhong Z, Zheng X, et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 2005; 35(2): 169-73.
[http://dx.doi.org/10.1016/j.bcmd.2005.07.001] [PMID: 16081306]
[80]
Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 2005; 11(3): 1010-20.
[http://dx.doi.org/10.1158/1078-0432.1010.11.3] [PMID: 15709166]
[81]
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 2009; 183(6): 3720-30.
[http://dx.doi.org/10.4049/jimmunol.0900970] [PMID: 19692638]
[82]
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018; 560(7718): 382-6.
[http://dx.doi.org/10.1038/s41586-018-0392-8] [PMID: 30089911]
[83]
Lux A, Kahlert C, Grützmann R, Pilarsky C. c-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer. Int J Mol Sci 2019; 20(13): 3305.
[http://dx.doi.org/10.3390/ijms20133305] [PMID: 31284422]
[84]
Del Re M, Marconcini R, Pasquini G, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer 2018; 118(6): 820-4.
[http://dx.doi.org/10.1038/bjc.2018.9] [PMID: 29509748]
[85]
Guan L, Wu B, Li T, et al. HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat Commun 2022; 13(1): 4078.
[http://dx.doi.org/10.1038/s41467-022-31713-6] [PMID: 35835783]
[86]
Martinez VG, O’Neill S, Salimu J, et al. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. OncoImmunology 2017; 6(12): e1362530.
[http://dx.doi.org/10.1080/2162402X.2017.1362530] [PMID: 29209569]
[87]
Nazimek K, Bryniarski K. Perspectives in manipulating EVs for therapeutic applications: Focus on cancer treatment. Int J Mol Sci 2020; 21(13): 4623.
[http://dx.doi.org/10.3390/ijms21134623] [PMID: 32610582]
[88]
Theodoraki MN, Yerneni S, Gooding WE, et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. OncoImmunology 2019; 8(7): e1593805.
[http://dx.doi.org/10.1080/2162402X.2019.1593805] [PMID: 31143513]
[89]
Xing C, Li H, Li RJ, et al. The roles of exosomal immune checkpoint proteins in tumors. Mil Med Res 2021; 8(1): 56.
[http://dx.doi.org/10.1186/s40779-021-00350-3] [PMID: 34743730]
[90]
Gao J, Qiu X, Li X, et al. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 498(3): 409-15.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.114] [PMID: 29452091]
[91]
Ye ZW, Yu ZL, Chen G, Jia J. Extracellular vesicles in tumor angiogenesis and resistance to anti-angiogenic therapy. Cancer Sci 2023; 114(7): 2739-49.
[http://dx.doi.org/10.1111/cas.15801] [PMID: 37010195]
[92]
Ma S, Mangala LS, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep 2021; 36(7): 109549.
[http://dx.doi.org/10.1016/j.celrep.2021.109549] [PMID: 34407412]
[93]
Haibe Y, Kreidieh M, El Hajj H, et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol 2020; 10: 221.
[http://dx.doi.org/10.3389/fonc.2020.00221] [PMID: 32175278]
[94]
Jackson MW, Bentel JM, Tilley WD. Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol 1997; 157(6): 2323-8.
[http://dx.doi.org/10.1016/S0022-5347(01)64774-8] [PMID: 9146664]
[95]
Feng Q, Zhang C, Lum D, et al. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 2017; 8(1): 14450.
[http://dx.doi.org/10.1038/ncomms14450] [PMID: 28205552]
[96]
Li J, Liu X, Zang S, et al. Small extracellular vesicle-bound vascular endothelial growth factor secreted by carcinoma-associated fibroblasts promotes angiogenesis in a bevacizumab-resistant manner. Cancer Lett 2020; 492: 71-83.
[http://dx.doi.org/10.1016/j.canlet.2020.08.030] [PMID: 32860852]
[97]
Simon T, Pinioti S, Schellenberger P, et al. Shedding of bevacizumab in tumour cells-derived extracellular vesicles as a new therapeutic escape mechanism in glioblastoma. Mol Cancer 2018; 17(1): 132.
[http://dx.doi.org/10.1186/s12943-018-0878-x] [PMID: 30165850]
[98]
Ko SY, Lee W, Kenny HA, et al. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol 2019; 2(1): 386.
[http://dx.doi.org/10.1038/s42003-019-0609-x] [PMID: 31646189]
[99]
Huang M, Chen M, Qi M, et al. Perivascular cell-derived extracellular vesicles stimulate colorectal cancer revascularization after withdrawal of antiangiogenic drugs. J Extracell Vesicles 2021; 10(7): e12096.
[http://dx.doi.org/10.1002/jev2.12096] [PMID: 34035882]
[100]
Yang Z, Klionsky DJ. Eaten alive: A history of macroautophagy. Nat Cell Biol 2010; 12(9): 814-22.
[http://dx.doi.org/10.1038/ncb0910-814] [PMID: 20811353]
[101]
Yang Z, Klionsky DJ. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22(2): 124-31.
[http://dx.doi.org/10.1016/j.ceb.2009.11.014] [PMID: 20034776]
[102]
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res 2014; 24(1): 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[103]
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20(7): 1981-91.
[http://dx.doi.org/10.1091/mbc.e08-12-1248] [PMID: 19211835]
[104]
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 2010; 6(6): 764-76.
[http://dx.doi.org/10.4161/auto.6.6.12709] [PMID: 20639694]
[105]
Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116(9): 1679-88.
[http://dx.doi.org/10.1242/jcs.00381] [PMID: 12665549]
[106]
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012; 151: 1256-69.
[107]
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol 2008; 445: 77-88.
[http://dx.doi.org/10.1007/978-1-59745-157-4_4] [PMID: 18425443]
[108]
Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 365-81.
[http://dx.doi.org/10.1038/s41580-018-0001-6] [PMID: 29626215]
[109]
Arndt V, Dick N, Tawo R, et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 2010; 20(2): 143-8.
[http://dx.doi.org/10.1016/j.cub.2009.11.022] [PMID: 20060297]
[110]
Fred Dice J. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15(8): 305-9.
[http://dx.doi.org/10.1016/0968-0004(90)90019-8] [PMID: 2204156]
[111]
Quintavalle C, Di Costanzo S, Zanca C, et al. Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells. J Cell Physiol 2014; 229(10): 1359-68.
[http://dx.doi.org/10.1002/jcp.24569] [PMID: 24477641]
[112]
Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 2011; 7(7): 673-82.
[http://dx.doi.org/10.4161/auto.7.7.14733] [PMID: 21646866]
[113]
Oku M, Sakai Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries. BioEssays 2018; 40(6): 1800008.
[http://dx.doi.org/10.1002/bies.201800008] [PMID: 29708272]
[114]
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9.
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[115]
Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 2007; 9(10): 1102-9.
[http://dx.doi.org/10.1038/ncb1007-1102] [PMID: 17909521]
[116]
Matoba K, Kotani T, Tsutsumi A, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol 2020; 27(12): 1185-93.
[http://dx.doi.org/10.1038/s41594-020-00518-w] [PMID: 33106658]
[117]
Popovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 2014; 15(4): 392-401.
[http://dx.doi.org/10.1002/embr.201337995] [PMID: 24603492]
[118]
Ganesan D, Cai Q. Understanding amphisomes. Biochem J 2021; 478(10): 1959-76.
[http://dx.doi.org/10.1042/BCJ20200917] [PMID: 34047789]
[119]
Chang H, Zou Z. Targeting autophagy to overcome drug resistance: Further developments. J Hematol Oncol 2020; 13(1): 159.
[http://dx.doi.org/10.1186/s13045-020-01000-2] [PMID: 33239065]
[120]
White E. Autophagy and p53. Cold Spring Harb Perspect Med 2016; 6(4): a026120.
[http://dx.doi.org/10.1101/cshperspect.a026120] [PMID: 27037419]
[121]
Yoon JH, Ahn SG, Lee BH, Jung SH, Oh SH. Role of autophagy in chemoresistance: Regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA–PKcs and PARP-1. Biochem Pharmacol 2012; 83(6): 747-57.
[http://dx.doi.org/10.1016/j.bcp.2011.12.029] [PMID: 22226932]
[122]
Wu W, Schecker J, Würstle S, Schneider F, Schönfelder M, Schlegel J. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells. Cancer Lett 2018; 417: 112-23.
[http://dx.doi.org/10.1016/j.canlet.2017.12.036] [PMID: 29306018]
[123]
Hou W, Han J, Lu C, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8. Autophagy 2010; 6(7): 891-900.
[http://dx.doi.org/10.4161/auto.6.7.13038] [PMID: 20724831]
[124]
Yang P, Song R, Li N, et al. Silica dust exposure induces autophagy in alveolar macrophages through switching Beclin1 affinity from Bcl-2 to PIK3C3. Environ Toxicol 2020; 35(7): 758-67.
[http://dx.doi.org/10.1002/tox.22910] [PMID: 32061152]
[125]
Liu F, Liu D, Yang Y, Zhao S. Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncol Lett 2013; 5(4): 1261-5.
[http://dx.doi.org/10.3892/ol.2013.1154] [PMID: 23599776]
[126]
Peng B, Xu L, Cao F, et al. HSP90 inhibitor, celastrol, arrests human monocytic leukemia cell U937 at G0/G1 in thiol-containing agents reversible way. Mol Cancer 2010; 9(1): 79.
[http://dx.doi.org/10.1186/1476-4598-9-79] [PMID: 20398364]
[127]
Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 2006; 66(9): 4758-65.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4529] [PMID: 16651429]
[128]
Kannaiyan R, Manu KA, Chen L, et al. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis 2011; 16(10): 1028-41.
[http://dx.doi.org/10.1007/s10495-011-0629-6] [PMID: 21786165]
[129]
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189: 112081.
[http://dx.doi.org/10.1016/j.ejmech.2020.112081] [PMID: 31991334]
[130]
Beauchamp EM, Üren A. A new era for an ancient drug: Arsenic trioxide and Hedgehog signaling. Vitam Horm 2012; 88: 333-54.
[http://dx.doi.org/10.1016/B978-0-12-394622-5.00015-8] [PMID: 22391311]
[131]
Zhang G, Liu J, Zhang Y, et al. Cbl-b-dependent degradation of FLIPL is involved in ATO-induced autophagy in leukemic K562 and gastric cancer cells. FEBS Lett 2012; 586(19): 3104-10.
[http://dx.doi.org/10.1016/j.febslet.2012.07.067] [PMID: 22884570]
[132]
Chen L, Han X, Hu Z, Chen L. The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis. Cancer Chemother Pharmacol 2019; 83(5): 921-31.
[http://dx.doi.org/10.1007/s00280-019-03808-3] [PMID: 30859368]
[133]
Ajabnoor GMA, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 2012; 3(1): e260.
[http://dx.doi.org/10.1038/cddis.2011.139] [PMID: 22278287]
[134]
O’Donovan TR, O’Sullivan GC, McKenna SL. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011; 7(5): 509-24.
[http://dx.doi.org/10.4161/auto.7.5.15066] [PMID: 21325880]
[135]
Zhang L, Yang A, Wang M, et al. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis 2016; 21(4): 473-88.
[http://dx.doi.org/10.1007/s10495-016-1214-9] [PMID: 26767845]
[136]
Lim SC, Hahm KS, Lee SH, Oh SH. Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology 2010; 276(1): 18-26.
[http://dx.doi.org/10.1016/j.tox.2010.06.010] [PMID: 20600546]
[137]
Kessel D, Oleinick NL. Initiation of autophagy by photodynamic therapy. Methods Enzymol 2009; 453: 1-16.
[http://dx.doi.org/10.1016/S0076-6879(08)04001-9] [PMID: 19216899]
[138]
Xue L, Chiu S, Azizuddin K, Joseph S, Oleinick NL. The death of human cancer cells following photodynamic therapy: Apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol 2007; 83(5): 1016-23.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00159.x] [PMID: 17880494]
[139]
Lihuan D, Jingcun Z, Ning J, et al. Photodynamic therapy with the novel photosensitizer chlorophyllin f induces apoptosis and autophagy in human bladder cancer cells. Lasers Surg Med 2014; 46(4): 319-34.
[http://dx.doi.org/10.1002/lsm.22225] [PMID: 24464873]
[140]
Kessel D, Arroyo AS. Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage. Photochem Photobiol Sci 2007; 6(12): 1290-5.
[http://dx.doi.org/10.1039/b707953b] [PMID: 18046484]
[141]
Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med 2013; 57: 39-48.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.12.005] [PMID: 23261943]
[142]
Dewaele M, Martinet W, Rubio N, et al. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J Cell Mol Med 2011; 15(6): 1402-14.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01118.x] [PMID: 20626525]
[143]
Valli F, García Vior MC, Roguin LP, Marino J. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma. Free Radic Biol Med 2020; 152: 743-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.018] [PMID: 31962157]
[144]
Andrzejak M, Price M, Kessel DH. Apoptotic and autophagic responses to photodynamic therapy in 1c1c7 murine hepatoma cells. Autophagy 2011; 7(9): 979-84.
[http://dx.doi.org/10.4161/auto.7.9.15865] [PMID: 21555918]
[145]
Kim I, Lemasters JJ. Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxid Redox Signal 2011; 14(10): 1919-28.
[http://dx.doi.org/10.1089/ars.2010.3768] [PMID: 21126216]
[146]
Rosin FCP, Teixeira MG, Pelissari C, Corrêa L. Photodynamic therapy mediated by 5-aminolevulinic acid promotes the upregulation and modifies the intracellular expression of surveillance proteins in oral squamous cell carcinoma. Photochem Photobiol 2019; 95(2): 635-43.
[http://dx.doi.org/10.1111/php.13029] [PMID: 30267573]
[147]
Zhang Q, Yang W, Man N, et al. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy 2009; 5(8): 1107-17.
[http://dx.doi.org/10.4161/auto.5.8.9842] [PMID: 19786831]
[148]
François A, Marchal S, Guillemin F, Bezdetnaya L. mTHPC-based photodynamic therapy induction of autophagy and apoptosis in cultured cells in relation to mitochondria and endoplasmic reticulum stress. Int J Oncol 2011; 39(6): 1537-43.
[http://dx.doi.org/10.3892/ijo.2011.1174] [PMID: 21874236]
[149]
Huang Q, Ou YS, Tao Y, Yin H, Tu PH. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells. Apoptosis 2016; 21(6): 749-60.
[http://dx.doi.org/10.1007/s10495-016-1243-4] [PMID: 27108344]
[150]
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int J Oral Sci 2024; 16(1): 24.
[http://dx.doi.org/10.1038/s41368-024-00282-3] [PMID: 38472176]
[151]
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548-563.e16.
[http://dx.doi.org/10.1016/j.cell.2017.07.008] [PMID: 28753429]
[152]
Gao Y, Bi D, Xie R, et al. Correction to: Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther 2021; 6(1): 434.
[http://dx.doi.org/10.1038/s41392-021-00840-9] [PMID: 34934043]
[153]
Yang X, Song X, Li Z, Liu N, Yan Y, Liu B. Crosstalk between extracellular vesicles and autophagy in cardiovascular pathophysiology. Pharmacol Res 2021; 172: 105628.
[http://dx.doi.org/10.1016/j.phrs.2021.105628] [PMID: 33887437]
[154]
Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins. Nature 2020; 579(7798): 260-4.
[http://dx.doi.org/10.1038/s41586-020-2066-6] [PMID: 32132711]
[155]
Guo H, Chitiprolu M, Roncevic L, et al. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell 2017; 43(6): 716-730.e7.
[http://dx.doi.org/10.1016/j.devcel.2017.11.018] [PMID: 29257951]
[156]
Murrow L, Malhotra R, Debnath J. ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol 2015; 17(3): 300-10.
[http://dx.doi.org/10.1038/ncb3112] [PMID: 25686249]
[157]
Nair U, Jotwani A, Geng J, et al. SNARE proteins are required for macroautophagy. Cell 2011; 146(2): 290-302.
[http://dx.doi.org/10.1016/j.cell.2011.06.022] [PMID: 21784249]
[158]
Zou W, Lai M, Zhang Y, et al. Exosome release is regulated by mTORC1. Adv Sci (Weinh) 2019; 6(3): 1801313.
[http://dx.doi.org/10.1002/advs.201801313] [PMID: 30775228]
[159]
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2008; 9(2): 230-50.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00677.x] [PMID: 17999726]
[160]
Gardner JO, Leidal AM, Nguyen TA, Debnath J. LC3-dependent EV loading and secretion (LDELS) promotes TFRC (transferrin receptor) secretion via extracellular vesicles. Autophagy 2023; 19(5): 1551-61.
[http://dx.doi.org/10.1080/15548627.2022.2140557] [PMID: 36286616]
[161]
Chen YD, Fang YT, Cheng YL, et al. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep 2017; 7(1): 5676.
[http://dx.doi.org/10.1038/s41598-017-06076-4] [PMID: 28720835]
[162]
Peng X, Yang L, Ma Y, et al. IKKβ activation promotes amphisome formation and extracellular vesicle secretion in tumor cells. Biochim Biophys Acta Mol Cell Res 2021; 1868(1): 118857.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118857] [PMID: 32949647]
[163]
Hessvik NP, Øverbye A, Brech A, et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci 2016; 73(24): 4717-37.
[http://dx.doi.org/10.1007/s00018-016-2309-8] [PMID: 27438886]
[164]
Ariotti N, Wu Y, Okano S, et al. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy 2021; 17(9): 2200-16.
[http://dx.doi.org/10.1080/15548627.2020.1820787] [PMID: 32897127]
[165]
Lawrence RE, Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 2019; 21(2): 133-42.
[http://dx.doi.org/10.1038/s41556-018-0244-7] [PMID: 30602725]
[166]
Pedrioli G, Paganetti P. Hijacking endocytosis and autophagy in extracellular vesicle communication: Where the inside meets the outside. Front Cell Dev Biol 2021; 8: 595515.
[http://dx.doi.org/10.3389/fcell.2020.595515] [PMID: 33490063]
[167]
Hanelova K, Raudenska M, Kratochvilova M, et al. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Commun Signal 2023; 21(1): 120.
[http://dx.doi.org/10.1186/s12964-023-01126-z] [PMID: 37226246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy