Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Autophagy plays a crucial role in modulating the proliferation of cancer diseases. However, the application of Naringenin (Nar), a compound with potential benefits against these diseases, has been limited due to its poor solubility and bioavailability.
Objective: This study aimed to develop solid lipid nanoparticles (Nar-SLNs) loaded with Nar to enhance their therapeutic impact. Methods: In vitro experiments using Rin-5F cells exposed to Nar and Nar-SLNs were carried out to investigate the protective effects of Nar and its nanoformulation against the pancreatic cancer cell line of Rin-5F. Results: Treatment with Nar and Nar-SLN led to an increase in autophagic markers (Akt, LC3, Beclin1, and ATG genes) and a decrease in the level of miR-21. Both Nar and Nar-SLN treatments inhibited cell proliferation and reduced the expression of autophagic markers. Notably, Nar-SLNs exhibited greater efficacy compared to free Nar. Conclusion: These findings suggest that SLNs effectively enhance the cytotoxic impact of Nar, making Nar-SLNs a promising candidate for suppressing or preventing Rin-5Fcell growth.[1]
Owens DK, Davidson KW, Krist AH, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement. JAMA 2019; 322(5): 438-44.
[http://dx.doi.org/10.1001/jama.2019.10232] [PMID: 31386141]
[http://dx.doi.org/10.1001/jama.2019.10232] [PMID: 31386141]
[2]
Luo W, Tao J, Zheng L, Zhang T. Current epidemiology of pancreatic cancer: Challenges and opportunities. Chin J Cancer Res 2020; 32(6): 705-19.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.04] [PMID: 33446994]
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.04] [PMID: 33446994]
[3]
Jagadeesan B, Haran PH, Praveen D, Chowdary PR, Aanandhi MV. A comprehensive review on pancreatic cancer. Res J Pharm Technol 2021; 14(1): 552-4.
[http://dx.doi.org/10.5958/0974-360X.2021.00100.1]
[http://dx.doi.org/10.5958/0974-360X.2021.00100.1]
[4]
Hu JX, Zhao CF, Chen WB, et al. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol 2021; 27(27): 4298-321.
[http://dx.doi.org/10.3748/wjg.v27.i27.4298] [PMID: 34366606]
[http://dx.doi.org/10.3748/wjg.v27.i27.4298] [PMID: 34366606]
[5]
Cheng Jin, Ling Bai. Pancreatic cancer: Current situation and challenges. Gastroenterol Hepatol Lett 2020; 2(1): 1-3.
[http://dx.doi.org/10.18063/ghl.v2i1.243]
[http://dx.doi.org/10.18063/ghl.v2i1.243]
[6]
Menini S, Iacobini C, Vitale M, Pesce C, Pugliese G. Diabetes and pancreatic cancer—A dangerous liaison relying on carbonyl stress. Cancers 2021; 13(2): 313.
[http://dx.doi.org/10.3390/cancers13020313] [PMID: 33467038]
[http://dx.doi.org/10.3390/cancers13020313] [PMID: 33467038]
[7]
Liang JQ, Teoh N, Xu L, et al. Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 2018; 9(1): 4490.
[http://dx.doi.org/10.1038/s41467-018-06931-6] [PMID: 30367044]
[http://dx.doi.org/10.1038/s41467-018-06931-6] [PMID: 30367044]
[8]
Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290(5497): 1717-21.
[http://dx.doi.org/10.1126/science.290.5497.1717] [PMID: 11099404]
[http://dx.doi.org/10.1126/science.290.5497.1717] [PMID: 11099404]
[9]
Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8(4): 325-32.
[http://dx.doi.org/10.1016/j.cmet.2008.08.009] [PMID: 18840363]
[http://dx.doi.org/10.1016/j.cmet.2008.08.009] [PMID: 18840363]
[10]
Boya P. González-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25(3): 1025-40.
[http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005] [PMID: 15657430]
[http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005] [PMID: 15657430]
[11]
Tsujimoto Y, Shimizu S. Another way to die: Autophagic programmed cell death. Cell Death Differ 2005; 12 (Suppl. 2): 1528-34.
[http://dx.doi.org/10.1038/sj.cdd.4401777] [PMID: 16247500]
[http://dx.doi.org/10.1038/sj.cdd.4401777] [PMID: 16247500]
[12]
Eltschinger S, Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 2016; 26(2): 148-59.
[http://dx.doi.org/10.1016/j.tcb.2015.10.003] [PMID: 26546292]
[http://dx.doi.org/10.1016/j.tcb.2015.10.003] [PMID: 26546292]
[13]
Levine B, Kroemer G. SnapShot: Macroautophagy. Cell Death Differ 2008; 132(1): 162.
[http://dx.doi.org/10.1016/j.cell.2007.12.026]
[http://dx.doi.org/10.1016/j.cell.2007.12.026]
[14]
Lim YM, Lim H, Hur KY, et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 2014; 5(1): 4934.
[http://dx.doi.org/10.1038/ncomms5934] [PMID: 25255859]
[http://dx.doi.org/10.1038/ncomms5934] [PMID: 25255859]
[15]
Shibata M, Yoshimura K, Furuya N, et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem Biophys Res Commun 2009; 382(2): 419-23.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.039] [PMID: 19285958]
[http://dx.doi.org/10.1016/j.bbrc.2009.03.039] [PMID: 19285958]
[16]
Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 2016; 68(1): 1-26.
[http://dx.doi.org/10.1002/art.39480] [PMID: 26545940]
[http://dx.doi.org/10.1002/art.39480] [PMID: 26545940]
[17]
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 2009; 106(47): 19860-5.
[http://dx.doi.org/10.1073/pnas.0906048106] [PMID: 19910529]
[http://dx.doi.org/10.1073/pnas.0906048106] [PMID: 19910529]
[18]
Deshpande S, Abdollahi M, Wang M, Lanting L, Kato M, Natarajan R. Reduced autophagy by a microRNA-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy. Sci Rep 2018; 8(1): 6954.
[http://dx.doi.org/10.1038/s41598-018-25295-x] [PMID: 29725042]
[http://dx.doi.org/10.1038/s41598-018-25295-x] [PMID: 29725042]
[19]
Estrella S, Garcia-Diaz DF, Codner E, Camacho-Guillén P, Pérez-Bravo F. Expression of miR-22 and miR-150 in type 1 diabetes mellitus: Possible relationship with autoimmunity and clinical characteristics. J Medicina Clínica 2016; 147(6): 245-7.
[PMID: 27377214]
[PMID: 27377214]
[20]
Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: Promotive role of miR‐21 in fibroblast migration. Int Wound J 2012; 9(4): 355-61.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00890.x] [PMID: 22067035]
[http://dx.doi.org/10.1111/j.1742-481X.2011.00890.x] [PMID: 22067035]
[21]
Olivieri F, Spazzafumo L, Bonafè M, et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: Relationship with type 2 diabetes complications. Oncotarget 2015; 6(34): 35372-82.
[PMID: 26498351]
[PMID: 26498351]
[22]
Zhong X, Chung ACK, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 2013; 56(3): 663-74.
[http://dx.doi.org/10.1007/s00125-012-2804-x] [PMID: 23292313]
[http://dx.doi.org/10.1007/s00125-012-2804-x] [PMID: 23292313]
[23]
Guo YB, Ji TF, Zhou HW, Yu JL. Retracted article: Effects of microRNA-21 on nerve cell regeneration and neural function recovery in diabetes mellitus combined with cerebral infarction rats by targeting pdcd4. Mol Neurobiol 2018; 55(3): 2494-505.
[http://dx.doi.org/10.1007/s12035-017-0484-8] [PMID: 28389999]
[http://dx.doi.org/10.1007/s12035-017-0484-8] [PMID: 28389999]
[24]
Zhang Y. MicroRNA-22 promotes renal tubulointerstitial fibrosis by targeting PTEN and suppressing autophagy in diabetic nephropathy. J Diabetes Res 2018; 2018: 4728645.
[25]
Chen Z, Li YB, Han J, et al. The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy 2011; 7(1): 12-6.
[http://dx.doi.org/10.4161/auto.7.1.13607] [PMID: 20935505]
[http://dx.doi.org/10.4161/auto.7.1.13607] [PMID: 20935505]
[26]
Yang LC, Hsieh CC, Wen CL, Chiu CH, Lin WC. Structural characterization of an immunostimulating polysaccharide from the stems of a new medicinal Dendrobium species: Dendrobium Taiseed Tosnobile. Int J Biol Macromol 2017; 103: 1185-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.185] [PMID: 28579460]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.185] [PMID: 28579460]
[27]
Hidayat AFA, Chan CK, Mohamad J, Kadir HA. Leptospermum flavescens Sm. Protect pancreatic β cell function from streptozotocin involving apoptosis and autophagy signaling pathway in in vitro and in vivo case study. J Ethnopharmacol 2018; 226: 120-31.
[http://dx.doi.org/10.1016/j.jep.2018.08.020] [PMID: 30118836]
[http://dx.doi.org/10.1016/j.jep.2018.08.020] [PMID: 30118836]
[28]
Varshney R, Gupta S, Roy P. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol 2017; 448: 1-20.
[http://dx.doi.org/10.1016/j.mce.2017.02.033] [PMID: 28237721]
[http://dx.doi.org/10.1016/j.mce.2017.02.033] [PMID: 28237721]
[29]
Fattahi A, Niyazi F, Shahbazi B, Farzaei MH, Bahrami G. Antidiabetic mechanisms of Rosa canina fruits: An in vitro evaluation. J Evid Based Complementary Altern Med 2017; 22(1): 127-33.
[http://dx.doi.org/10.1177/2156587216655263] [PMID: 27352916]
[http://dx.doi.org/10.1177/2156587216655263] [PMID: 27352916]
[30]
Nouri Z, Fakhri S, El-Senduny FF, et al. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 2019; 9(11): 690.
[http://dx.doi.org/10.3390/biom9110690] [PMID: 31684142]
[http://dx.doi.org/10.3390/biom9110690] [PMID: 31684142]
[31]
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the prevention of metabolic syndrome: A pharmacological and biopharmaceutical review. Front Bioeng Biotechnol 2020; 8: 425.
[http://dx.doi.org/10.3389/fbioe.2020.00425] [PMID: 32478050]
[http://dx.doi.org/10.3389/fbioe.2020.00425] [PMID: 32478050]
[32]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[33]
Ji P, Yu T, Liu Y, et al. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther 2016; 10: 911-25.
[PMID: 27041995]
[PMID: 27041995]
[34]
Nouri Z, Sajadimajd S, Hoseinzadeh L, et al. Neuroprotective effect of naringenin‐loaded solid lipid nanoparticles against streptozocin‐induced neurotoxicity through autophagy blockage. J Food Biochem 2022; 46(12): e14408.
[http://dx.doi.org/10.1111/jfbc.14408] [PMID: 36129161]
[http://dx.doi.org/10.1111/jfbc.14408] [PMID: 36129161]
[35]
Ahmadifard Z, Ahmeda A, Rasekhian M, Moradi S, Arkan E. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. J Drug Deliv Sci Technol 2020; 57: 101621.
[http://dx.doi.org/10.1016/j.jddst.2020.101621]
[http://dx.doi.org/10.1016/j.jddst.2020.101621]
[36]
Sajadimajd S, Bahrami G, Mohammadi B, Nouri Z, Farzaei MH, Chen JT. Protective effect of the isolated oligosaccharide from Rosa canina in STZ‐treated cells through modulation of the autophagy pathway. J Food Biochem 2020; 44(10): e13404.
[http://dx.doi.org/10.1111/jfbc.13404] [PMID: 32761921]
[http://dx.doi.org/10.1111/jfbc.13404] [PMID: 32761921]
[37]
Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res 1991; 51(10): 2515-20.
[PMID: 2021931]
[PMID: 2021931]
[38]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[39]
Hashemi M, Mirdamadi MSA, Talebi Y, et al. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187: 106568.
[http://dx.doi.org/10.1016/j.phrs.2022.106568] [PMID: 36423787]
[http://dx.doi.org/10.1016/j.phrs.2022.106568] [PMID: 36423787]
[40]
Zhao Q, Chen S, Zhu Z, et al. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis 2018; 9(12): 1157.
[http://dx.doi.org/10.1038/s41419-018-1182-9] [PMID: 30464258]
[http://dx.doi.org/10.1038/s41419-018-1182-9] [PMID: 30464258]
[41]
Sui X, Chen R, Wang Z, et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4(10): e838-8.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[42]
Tracey N, Creedon H, Kemp AJ, et al. HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies. Breast Cancer Res Treat 2020; 179(3): 543-55.
[http://dx.doi.org/10.1007/s10549-019-05489-1] [PMID: 31705351]
[http://dx.doi.org/10.1007/s10549-019-05489-1] [PMID: 31705351]
[43]
Clark CA, Gupta HB, Curiel TJ. Tumor cell-intrinsic CD274/PD-L1: A novel metabolic balancing act with clinical potential. Autophagy 2017; 13(5): 987-8.
[http://dx.doi.org/10.1080/15548627.2017.1280223] [PMID: 28368722]
[http://dx.doi.org/10.1080/15548627.2017.1280223] [PMID: 28368722]
[44]
Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809-20.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[45]
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100(25): 15077-82.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[46]
Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25(8): 795-800.
[http://dx.doi.org/10.1101/gad.2016211] [PMID: 21498569]
[http://dx.doi.org/10.1101/gad.2016211] [PMID: 21498569]
[47]
Jung YY, Lee YK, Koo JS. The potential of Beclin 1 as a therapeutic target for the treatment of breast cancer. Expert Opin Ther Targets 2016; 20(2): 167-78.
[http://dx.doi.org/10.1517/14728222.2016.1085971] [PMID: 26357854]
[http://dx.doi.org/10.1517/14728222.2016.1085971] [PMID: 26357854]
[48]
Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25(7): 717-29.
[http://dx.doi.org/10.1101/gad.2016111] [PMID: 21406549]
[http://dx.doi.org/10.1101/gad.2016111] [PMID: 21406549]
[49]
Algul D, Duman G, Ozdemir S, Acar ET, Yener G. Preformulation, characterization, and in vitro release studies of caffeine-loaded solid lipid nanoparticles. J Cosmet Sci 2018; 69(3): 165-73.
[PMID: 30052191]
[PMID: 30052191]
[50]
Hu F, Hong Y, Yuan H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 2004; 273(1-2): 29-35.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.016] [PMID: 15010127]
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.016] [PMID: 15010127]
[51]
Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016; 95: 37-45.
[http://dx.doi.org/10.1016/j.neuint.2016.01.006] [PMID: 26826319]
[http://dx.doi.org/10.1016/j.neuint.2016.01.006] [PMID: 26826319]
[52]
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6): 857-68.
[http://dx.doi.org/10.1016/S0092-8674(00)80595-4] [PMID: 10102273]
[http://dx.doi.org/10.1016/S0092-8674(00)80595-4] [PMID: 10102273]
[53]
John A, Raza H. Azadirachtin attenuates lipopolysaccharide-induced ROS production, DNA damage, and apoptosis by regulating JNK/Akt and AMPK/mTOR-dependent pathways in Rin-5F pancreatic beta cells. Biomedicines 2021; 9(12): 1943.
[PMID: 34944759]
[PMID: 34944759]
[54]
Huo D, Jiang S, Qin Z, et al. Omethoate induces pharyngeal cancer cell proliferation and G1/S cell cycle progression by activation of Akt/GSK-3β/cyclin D1 signaling pathway. Toxicology 2019; 427: 152298.
[http://dx.doi.org/10.1016/j.tox.2019.152298] [PMID: 31574243]
[http://dx.doi.org/10.1016/j.tox.2019.152298] [PMID: 31574243]
[55]
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 2002; 192(1): 1-15.
[http://dx.doi.org/10.1002/jcp.10119] [PMID: 12115731]
[http://dx.doi.org/10.1002/jcp.10119] [PMID: 12115731]
[56]
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res 2014; 24(1): 69-79.
[http://dx.doi.org/10.1038/cr.2013.161] [PMID: 24323045]
[http://dx.doi.org/10.1038/cr.2013.161] [PMID: 24323045]
[57]
Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36: 101679.
[http://dx.doi.org/10.1016/j.redox.2020.101679] [PMID: 32818797]
[http://dx.doi.org/10.1016/j.redox.2020.101679] [PMID: 32818797]
[58]
Chen X, Li L, Xu S, et al. Ultraviolet B radiation down-regulates ULK1 and ATG7 expression and impairs the autophagy response in human keratinocytes. J Photochem Photobiol B 2018; 178: 152-64.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.043] [PMID: 29154199]
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.043] [PMID: 29154199]
[59]
Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology 2016; 150(2): 328-39.
[http://dx.doi.org/10.1053/j.gastro.2015.09.042] [PMID: 26453774]
[http://dx.doi.org/10.1053/j.gastro.2015.09.042] [PMID: 26453774]
[60]
Yang Y, Fiskus W, Yong B, et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci USA 2013; 110(17): 6841-6.
[http://dx.doi.org/10.1073/pnas.1217692110] [PMID: 23569248]
[http://dx.doi.org/10.1073/pnas.1217692110] [PMID: 23569248]
[61]
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol 2023; 14: 1141516.
[http://dx.doi.org/10.3389/fendo.2023.1141516] [PMID: 37065747]
[http://dx.doi.org/10.3389/fendo.2023.1141516] [PMID: 37065747]
[62]
Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev 2010; 3(3): 168-77.
[http://dx.doi.org/10.4161/oxim.3.3.12106] [PMID: 20716941]
[http://dx.doi.org/10.4161/oxim.3.3.12106] [PMID: 20716941]
[63]
Brimson JM, Prasanth MI, Malar DS, et al. Plant polyphenols for aging health: Implication from their autophagy modulating properties in age-associated diseases. Pharmaceuticals 2021; 14(10): 982.
[http://dx.doi.org/10.3390/ph14100982] [PMID: 34681206]
[http://dx.doi.org/10.3390/ph14100982] [PMID: 34681206]
[64]
Wang Z, Quan W, Zeng M, et al. Regulation of autophagy by plant‐based polyphenols: A critical review of current advances in glucolipid metabolic diseases and food industry applications. Food Front 2023; 4(3): 1039-67.
[http://dx.doi.org/10.1002/fft2.255]
[http://dx.doi.org/10.1002/fft2.255]
[65]
Barth S, Glick D, Macleod KF. Autophagy: Assays and artifacts. J Pathol 2010; 221(2): 117-24.
[http://dx.doi.org/10.1002/path.2694] [PMID: 20225337]
[http://dx.doi.org/10.1002/path.2694] [PMID: 20225337]
[66]
Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 2009; 105(5): 481-91.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203703] [PMID: 19661458]
[http://dx.doi.org/10.1161/CIRCRESAHA.109.203703] [PMID: 19661458]
[67]
Salminen A, Kaarniranta K. SIRT1: Regulation of longevity via autophagy. Cell Signal 2009; 21(9): 1356-60.
[http://dx.doi.org/10.1016/j.cellsig.2009.02.014] [PMID: 19249351]
[http://dx.doi.org/10.1016/j.cellsig.2009.02.014] [PMID: 19249351]
[68]
Magura J, Hassan D, Moodley R, Mackraj I. Hesperidin-loaded nanoemulsions improve cytotoxicity, induce apoptosis, and downregulate miR-21 and miR-155 expression in MCF-7. J Microencapsul 2021; 38(7-8): 486-95.
[http://dx.doi.org/10.1080/02652048.2021.1979673] [PMID: 34510994]
[http://dx.doi.org/10.1080/02652048.2021.1979673] [PMID: 34510994]
[69]
Fahmy AM, Labonté P. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation. Sci Rep 2017; 7(1): 40351.
[http://dx.doi.org/10.1038/srep40351] [PMID: 28067309]
[http://dx.doi.org/10.1038/srep40351] [PMID: 28067309]
[70]
Chen J, Zhang L, Zhou H, et al. Inhibition of autophagy promotes cisplatin-induced apoptotic cell death through Atg5 and Beclin 1 in A549 human lung cancer cells. Mol Med Rep 2018; 17(5): 6859-65.
[http://dx.doi.org/10.3892/mmr.2018.8686] [PMID: 29512762]
[http://dx.doi.org/10.3892/mmr.2018.8686] [PMID: 29512762]
[71]
Ustuner D, Kolac UK, Ustuner MC, et al. Naringenin ameliorate carbon tetrachloride-induced hepatic damage through inhibition of endoplasmic reticulum stress and autophagy in rats. J Med Food 2020; 23(11): 1192-200.
[http://dx.doi.org/10.1089/jmf.2019.0265] [PMID: 32125927]
[http://dx.doi.org/10.1089/jmf.2019.0265] [PMID: 32125927]
[72]
Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2020; 104(2): 575-87.
[http://dx.doi.org/10.1007/s00253-019-10257-8] [PMID: 31832711]
[http://dx.doi.org/10.1007/s00253-019-10257-8] [PMID: 31832711]
[73]
Wang X, Jiang Y, Zhu L, et al. Autophagy protects PC12 cells against deoxynivalenol toxicity via the class III PI3K/beclin 1/Bcl‐2 pathway. J Cell Physiol 2020; 235(11): 7803-15.
[http://dx.doi.org/10.1002/jcp.29433] [PMID: 31930515]
[http://dx.doi.org/10.1002/jcp.29433] [PMID: 31930515]
[74]
Xu L, Shen J, Yu L, et al. Role of autophagy in sevoflurane-induced neurotoxicity in neonatal rat hippocampal cells. Brain Res Bull 2018; 140: 291-8.
[http://dx.doi.org/10.1016/j.brainresbull.2018.05.020] [PMID: 29857124]
[http://dx.doi.org/10.1016/j.brainresbull.2018.05.020] [PMID: 29857124]
[75]
Eisenberg-Lerner A, Bialik S, Simon H-U, Kimchi A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ 2009; 16(7): 966-75.
[http://dx.doi.org/10.1038/cdd.2009.33] [PMID: 19325568]
[http://dx.doi.org/10.1038/cdd.2009.33] [PMID: 19325568]
[76]
Gao Y, Li J, Wu L, et al. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: Autophagy and the PI3K/AKT pathways as a potential mechanism. J Surg Res 2016; 206(1): 67-76.
[http://dx.doi.org/10.1016/j.jss.2016.07.014] [PMID: 27916377]
[http://dx.doi.org/10.1016/j.jss.2016.07.014] [PMID: 27916377]
[77]
Li Y, Cho MH, Lee SS, Lee DE, Cheong H, Choi Y. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. J Control Release 2020; 325: 100-10.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.025] [PMID: 32621826]
[http://dx.doi.org/10.1016/j.jconrel.2020.06.025] [PMID: 32621826]
[78]
Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of astrocytes and microRNA dysregulation in neurodegenerative diseases: From pathogenesis to therapeutic potential. Front Mol Neurosci 2021; 14: 556215.
[http://dx.doi.org/10.3389/fnmol.2021.556215] [PMID: 33815055]
[http://dx.doi.org/10.3389/fnmol.2021.556215] [PMID: 33815055]
[79]
Yu X, Li R, Shi W, et al. Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother 2016; 77: 37-44.
[http://dx.doi.org/10.1016/j.biopha.2015.11.005] [PMID: 26796263]
[http://dx.doi.org/10.1016/j.biopha.2015.11.005] [PMID: 26796263]
[80]
Meng X, Zhang Y, Huang XR, Ren G, Li J, Lan HY. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 2015; 6(35): 36984-97.
[http://dx.doi.org/10.18632/oncotarget.6100] [PMID: 26474462]
[http://dx.doi.org/10.18632/oncotarget.6100] [PMID: 26474462]
[81]
Shi LB, Tang PF, Zhang W, Zhao YP, Zhang LC, Zhang H. Naringenin inhibits spinal cord injury-induced activation of neutrophils through miR-223. Gene 2016; 592(1): 128-33.
[http://dx.doi.org/10.1016/j.gene.2016.07.037] [PMID: 27432064]
[http://dx.doi.org/10.1016/j.gene.2016.07.037] [PMID: 27432064]