Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment

In Press, (this is not the final "Version of Record"). Available online 06 August, 2024
Author(s): Anuradha Mehra, Amit Mittal* and Prakhar Kumar Vishwakarma
Published on: 06 August, 2024

DOI: 10.2174/0113892002321919240801065905

Price: $95

Abstract

Background: Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives.

Objective: The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes.

Methods: Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity.

Results: Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity.

Conclusion: Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its high binding affinity, favorable ADMET (adjusted drug metabolic equivalents), minimal toxicity, and favorable pharmacokinetic profile warrants consideration for progress to in vitro testing. Nevertheless, to uncover potential therapeutic implications, particularly in the context of type 2 diabetes, thorough investigations and in-vivo evaluations are necessary for benchmarking before therapeutic use, especially experiments involving the STZ diabetic rat model.

[1]
Mustafa, Y.F.; Ismael, R.N.; Jebir, R.M. Natural coumarins from two cultivars of watermelon seeds as biosafe anticancer agents, An algorithm for their isolation and evaluation. J. Mol. Struct., 2024, 1295, 136644.
[http://dx.doi.org/10.1016/j.molstruc.2023.136644]
[2]
Pan, Y.; Liu, T.; Wang, X.; Sun, J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 616-628.
[http://dx.doi.org/10.1080/14756366.2021.2024526] [PMID: 35067136]
[3]
Ranđelović, S.; Bipat, R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes, 2021, 14.
[http://dx.doi.org/10.1177/11795514211042023] [PMID: 35173509]
[4]
Konidala, S.K.; Kotra, V.; Danduga, R.C.S.R.; Kola, P.K. Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking. Bioorg. Chem., 2020, 104, 104207.
[http://dx.doi.org/10.1016/j.bioorg.2020.104207] [PMID: 32947135]
[5]
Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci., 2020, 21(13), 4618.
[http://dx.doi.org/10.3390/ijms21134618] [PMID: 32610556]
[6]
Hussain, M.I.; Syed, Q.A.; Khattak, M.N.K.; Hafez, B.; Reigosa, M.J.; El-Keblawy, A. Natural product coumarins: Biological and pharmacological perspectives. Biologia (Bratisl.), 2019, 74(7), 863-888.
[http://dx.doi.org/10.2478/s11756-019-00242-x]
[7]
Şahı̇n, H. In-vitro anti-diabetic, anti-alzheimer, anti-tyrosinase, antioxidant activities of selected coumarin and dihydroisocoumarin derivatives. Int. J. Sec. Metabol., 2023, 10(3), 361-369.
[http://dx.doi.org/10.21448/ijsm.1196712]
[8]
Vawhal, P.K.; Jadhav, S.B.; Kaushik, S.; Panigrahi, K.C.; Nayak, C.; Urmee, H.; Khan, S.L.; Siddiqui, F.A.; Islam, F.; Eftekhari, A.; Alzahrani, A.R.; Azlina, M.F.N.; Sarker, M.M.R.; Ibrahim, I.A.A. Coumarin-based sulfonamide derivatives as potential dpp-iv inhibitors: pre-adme analysis, toxicity profile, computational analysis, and in vitro enzyme assay. Molecules, 2023, 28(3), 1004.
[http://dx.doi.org/10.3390/molecules28031004] [PMID: 36770672]
[9]
Ismael, R.; Mustafa, Y.; Al-Qazaz, H. Coumarin-based products: Their biodiversity and pharmacology. Iraqi J. Pharma., 2022, 18(2), 162-179.
[http://dx.doi.org/10.33899/iphr.2022.170405]
[10]
Sharifi-Rad, J.; Cruz-Martins, N.; López-Jornet, P.; Lopez, E.P.; Harun, N.; Yeskaliyeva, B.; Beyatli, A.; Sytar, O.; Shaheen, S.; Sharopov, F. Taheri, Y Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxid. Med. Cell. Longev., 2021, 6492346.
[http://dx.doi.org/10.1155/2021/6492346]
[11]
Kumar Pasala, V.; Gudipudi, G.; Sankeshi, V.; Basude, M.; Gundla, R. singh Jadav, S.; Srinivas, B.; Yadaiah Goud, E.; Nareshkumar, D. Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Bioorg. Chem., 2021, 114, 104970.
[http://dx.doi.org/10.1016/j.bioorg.2021.104970] [PMID: 34120026]
[12]
Al-Sofiani, M.E.; Asiri, A.; Alajmi, S.; Alkeridy, W. Perspectives on prediabetes and aging. Endocrinol. Metab. Clin. North Am., 2023, 52(2), 377-388.
[http://dx.doi.org/10.1016/j.ecl.2022.10.011] [PMID: 36948785]
[13]
Abdumannabovna, K.A.; Ilkhomzonovich, F.I.; Nematjonovna, F.K.; Sergeevna, A.B. The role of diet and preventive nutrition in diabetes type 2. Central Asian J. Med. Nat. Sci., 2022, 3(2), 324-328.
[14]
Leslie, R.D.; Palmer, J.; Schloot, N.C.; Lernmark, A. Diabetes at the crossroads: Relevance of disease classification to pathophysiology and treatment. Diabetologia, 2016, 59(1), 13-20.
[http://dx.doi.org/10.1007/s00125-015-3789-z] [PMID: 26498592]
[15]
Nugroho, P.; Andrew, H.; Kohar, K.; Noor, C.A.; Sutranto, A.L. Comparison between the world health organization (WHO) and international society of hypertension (ISH) guidelines for hypertension. Ann. Med., 2022, 54(1), 837-845.
[http://dx.doi.org/10.1080/07853890.2022.2044510] [PMID: 35291891]
[16]
Utura, T.; Fikrie, A. Prevalence and associated factors of diabetes mellitus among governmental civil servants at Guji Zone, Oromia Region, Ethiopia, 2021. A community-based cross-sectional study. PLoS One, 2022, 17(4), 267231.
[http://dx.doi.org/10.1371/journal.pone.0267231] [PMID: 35427392]
[17]
Zimmet, P.Z. Kelly West Lecture 1991. Challenges in diabetes epidemiology-from west to the rest. Diabetes Care, 1992, 15(2), 232-252.
[http://dx.doi.org/10.2337/diacare.15.2.232] [PMID: 1547680]
[18]
Mehra, A.; Mehra, A. Antidiabetic advancements in silico: Pioneering novel heterocyclic derivatives through computational design. Curr. Signal Transduct. Ther., 2024, 19(2), 61-71.
[http://dx.doi.org/10.2174/0115743624282326240418104054]
[19]
Zimmet, P.; Taylor, R.; Ram, P.; King, H.; Sloman, G.; Raper, L.R.; Hunt, D. Prevalence of diabetes and impaired glucose tolerance in the biracial (Melanesian and Indian) population of Fiji: A rural-urban comparison. Am. J. Epidemiol., 1983, 118(5), 673-688.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a113678] [PMID: 6637994]
[20]
Yang, K.; Wang, Y.; Li, Y.; Chen, Y.; Xing, N.; Lin, H.; Zhou, P.; Yu, X. Progress in the treatment of diabetic peripheral neuropathy. Biomed. Pharmacother., 2022, 148, 112717.
[http://dx.doi.org/10.1016/j.biopha.2022.112717] [PMID: 35193039]
[21]
Radha, V.; Kanthimathi, S.; Amutha, A.; Bhavadharini, B.; Anjana, R.M.; Unnikrishnan, R.; Mohan, V. Monogenic diabetes reported in So uth Asians: A systematic review. J. Indian Inst. Sci., 2023, 103(1), 309-334.
[http://dx.doi.org/10.1007/s41745-023-00399-0]
[22]
Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37, S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[23]
Thunander, M.; Törn, C.; Petersson, C.; Ossiansson, B.; Fornander, J.; Landin-Olsson, M. Levels of C-peptide, body mass index and age, and their usefulness in classification of diabetes in relation to autoimmunity, in adults with newly diagnosed diabetes in Kronoberg, Sweden. Eur. J. Endocrinol., 2012, 166(6), 1021-1029.
[http://dx.doi.org/10.1530/EJE-11-0797] [PMID: 22436402]
[24]
Rosenbloom, A.L.; Silverstein, J.H.; Amemiya, S.; Zeitler, P.; Klingensmith, G.J. Type 2 diabetes in children and adolescents. Pediatr. Diabetes, 2009, 10, 17-32.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00584.x] [PMID: 19754615]
[25]
Cakan, N.; Kizilbash, S.; Kamat, D. Changing spectrum of diabetes mellitus in children: Challenges with initial classification. Clin. Pediatr. (Phila.), 2012, 51(10), 939-944.
[http://dx.doi.org/10.1177/0009922812441666] [PMID: 22496179]
[26]
Wilkin, T.J. The accelerator hypothesis: A review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int. J. Obes., 2009, 33(7), 716-726.
[http://dx.doi.org/10.1038/ijo.2009.97]
[27]
Canivell, S.; Gomis, R. Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun. Rev., 2014, 13(4-5), 403-407.
[http://dx.doi.org/10.1016/j.autrev.2014.01.020] [PMID: 24424179]
[28]
Lamb, M.M.; Yin, X.; Zerbe, G.O.; Klingensmith, G.J.; Dabelea, D.; Fingerlin, T.E.; Rewers, M.; Norris, J.M. Height growth velocity, islet autoimmunity and type 1 diabetes development: The diabetes autoimmunity study in the young. Diabetologia, 2009, 52(10), 2064-2071.
[http://dx.doi.org/10.1007/s00125-009-1428-2] [PMID: 19547949]
[29]
Vehik, K.; Hamman, R.F.; Lezotte, D.; Norris, J.M.; Klingensmith, G.J.; Dabelea, D. Childhood growth and age at diagnosis with type 1 diabetes in Colorado young people. Diabet. Med., 2009, 26(10), 961-967.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02819.x] [PMID: 19900226]
[30]
Kalra, S.; Mithal, A.; Zargar, A.H.; Sethi, B.; Dharmalingam, M.; Ghosh, S.; Sen, R. Indian phenotype characteristics among patients with type 2 diabetes mellitus: Insights from a non-interventional nationwide registry in India. Touch Rev. Endocrinology, 2022, 18(1), 63.
[31]
Perl, S.; Kushner, J.A.; Buchholz, B.A.; Meeker, A.K.; Stein, G.M.; Hsieh, M.; Kirby, M.; Pechhold, S.; Liu, E.H.; Harlan, D.M.; Tisdale, J.F. Significant human β-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J. Clin. Endocrinol. Metab., 2010, 95(10), 234-239.
[http://dx.doi.org/10.1210/jc.2010-0932] [PMID: 20660050]
[32]
Davis, T.M.E.; Makepeace, A.E.; Ellard, S.; Colclough, K.; Peters, K.; Hattersley, A.; Davis, W.A. The prevalence of monogenic diabetes in Australia: The fremantle diabetes study phase II. Med. J. Aust., 2017, 207(8), 344-347.
[http://dx.doi.org/10.5694/mja16.01201] [PMID: 29020906]
[33]
Woodmansey, C.; McGovern, A.P.; McCullough, K.A.; Whyte, M.B.; Munro, N.M.; Correa, A.C.; Gatenby, P.A.C.; Jones, S.A.; de Lusignan, S. Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): A retrospective cohort study. Diabetes Care, 2017, 40(11), 1486-1493.
[http://dx.doi.org/10.2337/dc17-0542] [PMID: 28860126]
[34]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[35]
Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global prevalence of prediabetes. Diabetes Care, 2023, 46(7), 1388-1394.
[http://dx.doi.org/10.2337/dc22-2376] [PMID: 37196350]
[36]
Su, J.; Luo, Y.; Hu, S.; Tang, L.; Ouyang, S. Advances in research on type 2 diabetes mellitus targets and therapeutic agents. Int. J. Mol. Sci., 2023, 24(17), 13381.
[http://dx.doi.org/10.3390/ijms241713381] [PMID: 37686185]
[37]
Yang, W.; Jiang, W.; Guo, S. Regulation of macronutrients in insulin resistance and glucose homeostasis during type 2 diabetes mellitus. Nutrients, 2023, 15(21), 4671.
[http://dx.doi.org/10.3390/nu15214671] [PMID: 37960324]
[38]
Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet, 2022, 400(10365), 1803-1820.
[http://dx.doi.org/10.1016/S0140-6736(22)01655-5] [PMID: 36332637]
[39]
Butt, S.M. Management and treatment of type 2 diabetes Int. J. Comp. Info. Manufac., 2022, 2(1)
[40]
DeMarsilis, A.; Reddy, N.; Boutari, C.; Filippaios, A.; Sternthal, E.; Katsiki, N.; Mantzoros, C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism, 2022, 137, 155332.
[http://dx.doi.org/10.1016/j.metabol.2022.155332] [PMID: 36240884]
[41]
DeForest, N.; Majithia, A.R. Genetics of type 2 diabetes: Implications from large-scale studies. Curr. Diab. Rep., 2022, 22(5), 227-235.
[http://dx.doi.org/10.1007/s11892-022-01462-3] [PMID: 35305202]
[42]
Mizukami, H.; Kudoh, K. Diversity of pathophysiology in type 2 diabetes shown by islet pathology. J. Diabetes Investig., 2022, 13(1), 6-13.
[http://dx.doi.org/10.1111/jdi.13679] [PMID: 34562302]
[43]
Lima, J.E.B.F.; Moreira, N.C.S.; Sakamoto-Hojo, E.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2022, 874-875, 503437.
[http://dx.doi.org/10.1016/j.mrgentox.2021.503437] [PMID: 35151421]
[44]
Ren, Y.; Li, L.; Wan, L.; Huang, Y.; Cao, S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 606-615.
[http://dx.doi.org/10.1080/14756366.2021.2025362] [PMID: 35067153]
[45]
Kaur, A.; Thakur, S.; Deswal, G.; Chopra, B.; Dhingra, A.K.; Guarve, K.; Grewal, A.S. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase. J. Diabetes Metab. Disord., 2022, 22(1), 547-570.
[http://dx.doi.org/10.1007/s40200-022-01176-z] [PMID: 37255832]
[46]
Gao, Q.; Zhang, W.; Li, T.; Yang, G.; Zhu, W.; Chen, N.; Jin, H. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus. Medicine (Baltimore), 2021, 100(40), 27476.
[http://dx.doi.org/10.1097/MD.0000000000027476] [PMID: 34622877]
[47]
W, Yang evaluation of efficacy and safety of glucokinase activators-a systematic review and meta-analysis. Front. Endocrinol., 2023, 14, 1175198.
[48]
Liu, J.; Fu, H.; Kang, F.; Ning, G.; Ni, Q.; Wang, W.; Wang, Q. β‐Cell glucokinase expression was increased in type 2 diabetes subjects with better glycemic control. J. Diabetes, 2023, 15(5), 409-418.
[http://dx.doi.org/10.1111/1753-0407.13380] [PMID: 36942376]
[49]
Paliwal, A.; Paliwal, V.; Jain, S.; Paliwal, S.; Sharma, S. Current insight on the role of glucokinase and glucokinase regulatory protein in diabetes. Mini Rev. Med. Chem., 2024, 24(7), 674-688.
[http://dx.doi.org/10.2174/1389557523666230823151927] [PMID: 37612862]
[50]
Chakera, A.J.; Steele, A.M.; Gloyn, A.L.; Shepherd, M.H.; Shields, B.; Ellard, S.; Hattersley, A.T. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care, 2015, 38(7), 1383-1392.
[http://dx.doi.org/10.2337/dc14-2769] [PMID: 26106223]
[51]
Song, L.; Cao, F.; Niu, S.; Xu, M.; Liang, R.; Ding, K.; Lin, Z.; Yao, X.; Liu, D. Population pharmacokinetic/pharmacodynamic analysis of the glucokinase activator pb201 in healthy volunteers and patients with type 2 diabetes mellitus: Facilitating the clinical development of pb201 in China. Clin. Pharmacokinet., 2023, 2023, 1-6.
[PMID: 37985591]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy