Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Innovative Nanoscale Drug Delivery Strategies for Breast Carcinoma: A Comprehensive Exploration

In Press, (this is not the final "Version of Record"). Available online 06 August, 2024
Author(s): Jaishree S., Kousalya Selvaraj*, Prakash S. and Vineesh D.
Published on: 06 August, 2024

DOI: 10.2174/0113892002298034240802110752

Price: $95

Abstract

Breast cancer (BC) is one of the major causes of poor health in women and the most devastating disease after lung cancer. The term "cancer" refers to a collection of problems resulting from abnormal cell proliferation, particularly cells that can spread to other parts of the body. Surgery, followed by chemotherapy or radiotherapy, is now accepted for BC-related cancers. However, chemotherapy and radiotherapy are rarely effective in the treatment of BC due to the adverse effects of these treatments on healthy tissues and organs. Consequently, the use of NPs in targeted Drug Delivery Systems (DDSs) has emerged as a promising strategy for BC treatment. This review provides a summary of recent clinical investigations of nanoparticle-mediated DDS that offer a novel therapeutic strategy commonly used for the treatment of breast cancer.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Miao, H.; Verkooijen, H.M.; Chia, K.S.; Bouchardy, C.; Pukkala, E.; Larønningen, S.; Mellemkjær, L.; Czene, K.; Hartman, M. Incidence and outcome of male breast cancer: An international population-based study. J. Clin. Oncol., 2011, 29(33), 4381-4386.
[http://dx.doi.org/10.1200/JCO.2011.36.8902] [PMID: 21969512]
[3]
Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest., 2011, 121(7), 2750-2767.
[http://dx.doi.org/10.1172/JCI45014] [PMID: 21633166]
[4]
Reinert, T.; Barrios, C.H. Optimal management of hormone receptor positive metastatic breast cancer in 2016. Ther. Adv. Med. Oncol., 2015, 7(6), 304-320.
[http://dx.doi.org/10.1177/1758834015608993] [PMID: 26557899]
[5]
Mahvi, D.A.; Liu, R.; Grinstaff, M.W.; Colson, Y.L.; Raut, C.P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies. CA Cancer J. Clin., 2018, 68(6), 488-505.
[http://dx.doi.org/10.3322/caac.21498] [PMID: 30328620]
[6]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[7]
Sharma, A.; Jain, N.; Sareen, R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res. Int., 2013, 2013, 960821.
[http://dx.doi.org/10.1155/2013/960821]
[8]
Screening, PDQ Breast Cancer Screening (PDQ®): Health Professional Version. In: PDQ Cancer Information Summaries; Bethesda (MD); National Cancer Institute: US, 2002.
[9]
Doren, A.; Vecchiola, A.; Aguirre, B.; Villaseca, P. Gynecological–endocrinological aspects in women carriers of BRCA1/2 gene mutations. Climacteric, 2018, 21(6), 529-535.
[http://dx.doi.org/10.1080/13697137.2018.1514006] [PMID: 30295091]
[10]
Akram, M.; Siddiqui, S.A. Breast cancer management: Past, present and evolving. Indian J. Cancer, 2012, 49(3), 277-282.
[http://dx.doi.org/10.4103/0019-509X.104486] [PMID: 23238144]
[11]
Koppiker, C.B. Oncoplastic breast surgery in India: Thinking globally, acting locally. Indian J. Surg., 2019, 81, 103-110.
[12]
Silverstein, M.J.; Mai, T.; Savalia, N.; Vaince, F.; Guerra, L. Oncoplastic breast conservation surgery: The new paradigm. J. Surg. Oncol., 2014, 110(1), 82-89.
[http://dx.doi.org/10.1002/jso.23641] [PMID: 24847860]
[13]
Schnitt, S.J.; Moran, M.S.; Giuliano, A.E. Lumpectomy margins for invasive breast cancer and ductal carcinoma in situ: Current guideline recommendations, their implications, and impact. J. Clin. Oncol., 2020, 38(20), 2240-2245.
[http://dx.doi.org/10.1200/JCO.19.03213] [PMID: 32442067]
[14]
De La Cruz, L.; Moody, A.M.; Tappy, E.E.; Blankenship, S.A.; Hecht, E.M. Overall survival, disease-free survival, local recurrence, and nipple–areolar recurrence in the setting of nipple-sparing mastectomy: a meta-analysis and systematic review. Ann. Surg. Oncol., 2015, 22(10), 3241-3249.
[http://dx.doi.org/10.1245/s10434-015-4739-1] [PMID: 26242363]
[15]
Peled, A.W.; Wang, F.; Foster, R.D.; Alvarado, M.; Ewing, C.A.; Esserman, L.J.; Sbitany, H. Abstract P100. Plast. Reconstr. Surg., 2015, 135(4), 1259.
[http://dx.doi.org/10.1097/01.prs.0000464069.10343.db]
[16]
Giuliano, A.E.; Kirgan, D.M.; Guenther, J.M.; Morton, D.L. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann. Surg., 1994, 220(3), 391-401.
[http://dx.doi.org/10.1097/00000658-199409000-00015] [PMID: 8092905]
[17]
Lucci, A.; McCall, L.M.; Beitsch, P.D.; Whitworth, P.W.; Reintgen, D.S.; Blumencranz, P.W.; Leitch, A.M.; Saha, S.; Hunt, K.K.; Giuliano, A.E. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J. Clin. Oncol., 2007, 25(24), 3657-3663.
[http://dx.doi.org/10.1200/JCO.2006.07.4062] [PMID: 17485711]
[18]
Grubbé, E.H. Priority in the therapeutic use of X-rays. Radiology, 1933, 21(2), 156-162.
[http://dx.doi.org/10.1148/21.2.156]
[19]
Boyages, J. Radiation therapy and early breast cancer: Current controversies. Med. J. Aust., 2017, 207(5), 216-222.
[http://dx.doi.org/10.5694/mja16.01020] [PMID: 28987136]
[20]
Cheng, Y.J.; Nie, X.Y.; Ji, C.C.; Lin, X.X.; Liu, L.J.; Chen, X.M.; Yao, H.; Wu, S.H. Long-term cardiovascular risk after radiotherapy in women with breast cancer. J. Am. Heart Assoc., 2017, 6(5), e005633.
[http://dx.doi.org/10.1161/JAHA.117.005633] [PMID: 28529208]
[21]
Lagadec, C.; Vlashi, E.; Della Donna, L.; Meng, Y.; Dekmezian, C.; Kim, K.; Pajonk, F. Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res., 2010, 12(1), R13.
[http://dx.doi.org/10.1186/bcr2479] [PMID: 20158881]
[22]
Lock, F.E.; McDonald, P.C.; Lou, Y.; Serrano, I.; Chafe, S.C.; Ostlund, C.; Aparicio, S.; Winum, J-Y.; Supuran, C.T.; Dedhar, S. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene, 2013, 32(44), 5210-5219.
[http://dx.doi.org/10.1038/onc.2012.550] [PMID: 23208505]
[23]
He, M.Y.; Rancoule, C.; Rehailia-Blanchard, A.; Espenel, S.; Trone, J.C.; Bernichon, E.; Guillaume, E.; Vallard, A.; Magné, N. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Crit. Rev. Oncol. Hematol., 2018, 131, 96-101.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.004] [PMID: 30293712]
[24]
Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; Hiller, W.; Fisher, E.R.; Wickerham, D.L.; Bryant, J.; Wolmark, N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med., 2004, 351(27), 2817-2826.
[http://dx.doi.org/10.1056/NEJMoa041588] [PMID: 15591335]
[25]
Perez, E.A.; Romond, E.H.; Suman, V.J.; Jeong, J.H.; Sledge, G.; Geyer, C.E., Jr; Martino, S.; Rastogi, P.; Gralow, J.; Swain, S.M.; Winer, E.P.; Colon-Otero, G.; Davidson, N.E.; Mamounas, E.; Zujewski, J.A.; Wolmark, N. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol., 2014, 32(33), 3744-3752.
[http://dx.doi.org/10.1200/JCO.2014.55.5730] [PMID: 25332249]
[26]
Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; Pinter, T.; Valero, V.; Liu, M.C.; Sauter, G.; von Minckwitz, G.; Visco, F.; Bee, V.; Buyse, M.; Bendahmane, B.; Tabah-Fisch, I.; Lindsay, M.A.; Riva, A.; Crown, J. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med., 2011, 365(14), 1273-1283.
[http://dx.doi.org/10.1056/NEJMoa0910383] [PMID: 21991949]
[27]
Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Shapira, I.; Wolff, A.C.; Carey, L.A.; Overmoyer, B.A.; Partridge, A.H.; Guo, H.; Hudis, C.A.; Krop, I.E.; Burstein, H.J.; Winer, E.P. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N. Engl. J. Med., 2015, 372(2), 134-141.
[http://dx.doi.org/10.1056/NEJMoa1406281] [PMID: 25564897]
[28]
Chira, C.; Kirova, Y.M.; Liem, X.; Campana, F.; Peurien, D.; Amessis, M. Helical tomotherapy for inoperable breast cancer: a new promising tool. BioMed Res. Int., 2013, 2013, 264306.
[http://dx.doi.org/10.1155/2013/264306]
[29]
Broët, P.; Scholl, S.M.; de la Rochefordière, A.; Fourquet, A.; Moreau, T.; De Rycke, Y.; Asselain, B.; Pouillart, P. Short and long‐term effects on survival in breast cancer patients treated by primary chemotherapy: an updated analysis of a randomized trial. Breast Cancer Res. Treat., 1999, 58(2), 151-156.
[http://dx.doi.org/10.1023/A:1006339918798] [PMID: 10674880]
[30]
Fisher, B.; Bryant, J.; Wolmark, N.; Mamounas, E.; Brown, A.; Fisher, E.R.; Wickerham, D.L.; Begovic, M.; DeCillis, A.; Robidoux, A.; Margolese, R.G.; Cruz, A.B., Jr; Hoehn, J.L.; Lees, A.W.; Dimitrov, N.V.; Bear, H.D. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J. Clin. Oncol., 1998, 16(8), 2672-2685.
[http://dx.doi.org/10.1200/JCO.1998.16.8.2672] [PMID: 9704717]
[31]
Montemurro, F.; Nuzzolese, I.; Ponzone, R. Neoadjuvant or adjuvant chemotherapy in early breast cancer? Expert Opin. Pharmacother., 2020, 21(9), 1071-1082.
[http://dx.doi.org/10.1080/14656566.2020.1746273] [PMID: 32237920]
[32]
Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Taylor, C.; Wang, Y.C.; Bergh, J.; Di Leo, A.; Albain, K.; Swain, S.; Piccart, M.; Pritchard, K. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[http://dx.doi.org/10.1016/S0140-6736(11)61625-5] [PMID: 22152853]
[33]
Citron, M.L.; Berry, D.A.; Cirrincione, C.; Hudis, C.; Winer, E.P.; Gradishar, W.J.; Davidson, N.E.; Martino, S.; Livingston, R.; Ingle, J.N.; Perez, E.A.; Carpenter, J.; Hurd, D.; Holland, J.F.; Smith, B.L.; Sartor, C.I.; Leung, E.H.; Abrams, J.; Schilsky, R.L.; Muss, H.B.; Norton, L. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol., 2003, 21(8), 1431-1439.
[http://dx.doi.org/10.1200/JCO.2003.09.081] [PMID: 12668651]
[34]
Vidarsdottir, L.; Olafsdottir, E.J.; Barkardottir, R.B.; Bjarnadottir, O.; Jonasson, J.G.; Sigurdsson, S.; Tryggvadottir, L. Estrogen receptor-positive breast cancer and adverse outcome in BRCA2 mutation carriers and young non-carrier patients. NPJ Breast Cancer, 2023, 9(1), 95.
[http://dx.doi.org/10.1038/s41523-023-00600-8] [PMID: 38036573]
[35]
Day, E.S.; Bickford, L.R.; Slater, J.H.; Riggall, N.S.; Drezek, R.A.; West, J.L. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int. J. Nanomedicine, 2010, 5, 445-454.
[http://dx.doi.org/10.2147/IJN.S10881] [PMID: 20957166]
[36]
Cai, Z.; Chattopadhyay, N.; Yang, K.; Kwon, Y.L.; Yook, S.; Pignol, J.P.; Reilly, R.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl. Med. Biol., 2016, 43(12), 818-826.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.009] [PMID: 27788375]
[37]
Wang, X.; Yang, L.; Chen, Z.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[38]
Hanafi-Bojd, M.Y.; Jaafari, M.R.; Ramezanian, N.; Xue, M.; Amin, M.; Shahtahmassebi, N.; Malaekeh-Nikouei, B. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur. J. Pharm. Biopharm., 2015, 89, 248-258.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.009] [PMID: 25511563]
[39]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[40]
Adair, J.H.; Parette, M.P.; Altınoğlu, E.İ.; Kester, M. Nanoparticulate alternatives for drug delivery. ACS Nano, 2010, 4(9), 4967-4970.
[http://dx.doi.org/10.1021/nn102324e] [PMID: 20873786]
[41]
Myburgh, E.J.; Langenhoven, L.; Grant, K.A.; van der Merwe, L.; Kotze, M.J. Clinical Overestimation of HER2 positivity in early estrogen and progesterone receptor–positive breast cancer and the value of molecular subtyping using blueprint. J. Glob. Oncol., 2017, 3(4), 314-322.
[http://dx.doi.org/10.1200/JGO.2016.006072] [PMID: 28831439]
[42]
Malik, S.; Muhammad, K.; Waheed, Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules, 2023, 28(18), 6624.
[http://dx.doi.org/10.3390/molecules28186624] [PMID: 37764400]
[43]
Bangham, A.D. Liposomes: The Babraham connection. Chem. Phys. Lipids, 1993, 64(1-3), 275-285.
[http://dx.doi.org/10.1016/0009-3084(93)90071-A] [PMID: 8242839]
[44]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[45]
Boman, N.L.; Masin, D.; Mayer, L.D.; Cullis, P.R.; Bally, M.B. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res., 1994, 54(11), 2830-2833.
[PMID: 8187061]
[46]
Khodabandehloo, H.; Zahednasab, H.; Ashrafi Hafez, A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016. In Press(In Press), e3966.
[http://dx.doi.org/10.17795/ijcp-3966] [PMID: 27482328]
[47]
Wong, M.Y.; Chiu, G.N.C. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine, 2011, 7(6), 834-840.
[http://dx.doi.org/10.1016/j.nano.2011.02.001] [PMID: 21371568]
[48]
Dhankhar, R.; Vyas, S.P.; Jain, A.K.; Arora, S.; Rath, G.; Goyal, A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Immobil. Biotechnol., 2010, 38(5), 230-249.
[http://dx.doi.org/10.3109/10731199.2010.494578] [PMID: 20677900]
[49]
Gabizon, A.; Peretz, T.; Sulkes, A.; Amselem, S.; Ben-Yosef, R.; Ben-Baruch, N.; Catane, R.; Biran, S.; Barenholz, Y. Systemic administration of doxorubicin-containing liposomes in cancer patients: A phase I study. Eur. J. Cancer Clin. Oncol., 1989, 25(12), 1795-1803.
[http://dx.doi.org/10.1016/0277-5379(89)90350-7] [PMID: 2632261]
[50]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[51]
Huober, J.; Fett, W.; Nusch, A.; Neise, M.; Schmidt, M.; Wischnik, A.; Gerhardt, S.; Goehler, T.; Lück, H.J.; Rost, A. A multicentric observational trial of pegylated liposomal doxorubicin for metastatic breast cancer. BMC Cancer, 2010, 10(1), 2.
[http://dx.doi.org/10.1186/1471-2407-10-2] [PMID: 20047698]
[52]
Batist, G.; Barton, J.; Chaikin, P.; Swenson, C.; Welles, L. Myocet liposome-encapsulated doxorubicin citrate: A new approach in breast cancer therapy. Expert Opin. Pharmacother., 2002, 3(12), 1739-1751.
[http://dx.doi.org/10.1517/14656566.3.12.1739] [PMID: 12472371]
[53]
Chan, S.; Davidson, N.; Juozaityte, E.; Erdkamp, F.; Pluzanska, A.; Azarnia, N.; Lee, L.W. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann. Oncol., 2004, 15(10), 1527-1534.
[http://dx.doi.org/10.1093/annonc/mdh393] [PMID: 15367414]
[54]
Burade, V.; Bhowmick, S.; Maiti, K.; Zalawadia, R.; Ruan, H.; Thennati, R. Lipodox® (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer, 2017, 17(1), 405.
[http://dx.doi.org/10.1186/s12885-017-3377-3] [PMID: 28587612]
[55]
Xu, X.; Wang, L.; Xu, H.Q.; Huang, X.E.; Qian, Y.D.; Xiang, J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac. J. Cancer Prev., 2013, 14(4), 2591-2594.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2591] [PMID: 23725180]
[56]
Wang, H.; Cheng, G.; Du, Y.; Ye, L.; Chen, W.; Zhang, L.; Wang, T.; Tian, J.; Fu, F. Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation. Mol. Med. Rep., 2013, 7(3), 947-952.
[http://dx.doi.org/10.3892/mmr.2013.1264] [PMID: 23291923]
[57]
He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[58]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[59]
Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C.E.; Cai, J. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale, 2017, 9(42), 16365-16374.
[http://dx.doi.org/10.1039/C7NR06898K] [PMID: 29052674]
[60]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[61]
Shenoy, D.B.; Amiji, M.M. Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005, 293(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[62]
Lee, J.H.; Nan, A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/915375] [PMID: 22619725]
[63]
Yang, Y.; Pan, D.; Luo, K.; Li, L.; Gu, Z. Biodegradable and amphiphilic block copolymer–doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials, 2013, 34(33), 8430-8443.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.037] [PMID: 23896006]
[64]
Katiyar, S.S.; Muntimadugu, E.; Rafeeqi, T.A.; Domb, A.J.; Khan, W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv., 2016, 23(7), 2608-2616.
[http://dx.doi.org/10.3109/10717544.2015.1039667] [PMID: 26036652]
[65]
Chowdhury, P.; Nagesh, P.K.B.; Khan, S.; Hafeez, B.B.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharm. Sin. B, 2018, 8(4), 602-614.
[http://dx.doi.org/10.1016/j.apsb.2017.10.004] [PMID: 30109184]
[66]
Vivek, R.; Thangam, R. NipunBabu, V.; Rejeeth, C.; Sivasubramanian, S.; Gunasekaran, P.; Muthuchelian, K.; Kannan, S. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl. Mater. Interfaces, 2014, 6(9), 6469-6480.
[http://dx.doi.org/10.1021/am406012g] [PMID: 24780315]
[67]
Massadeh, S.; Omer, M.E.; Alterawi, A.; Ali, R.; Alanazi, F.H.; Almutairi, F.; Almotairi, W.; Alobaidi, F.F.; Alhelal, K.; Almutairi, M.S.; Almalik, A.; Obaidat, A.A.; Alaamery, M.; Yassin, A.E. Optimized polyethylene glycolylated polymer–lipid hybrid nanoparticles as a potential breast cancer treatment. Pharmaceutics, 2020, 12(7), 666.
[http://dx.doi.org/10.3390/pharmaceutics12070666] [PMID: 32679809]
[68]
Aman, R.M.; Zaghloul, R.A.; Elsaed, W.M.; Hashim, I.I.A. In vitro–in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis. Drug Deliv. Transl. Res., 2023, 13(11), 2903-2929.
[http://dx.doi.org/10.1007/s13346-023-01360-5] [PMID: 37284937]
[69]
Ghosh, P.; Han, G.; De, M.; Kim, C.; Rotello, V. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[70]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[71]
Lee, S.M.; Kim, H.J.; Kim, S.Y.; Kwon, M.K.; Kim, S.; Cho, A.; Yun, M.; Shin, J.S.; Yoo, K.H. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials, 2014, 35(7), 2272-2282.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.068] [PMID: 24342728]
[72]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[73]
Prabaharan, M.; Grailer, J.J.; Pilla, S.; Steeber, D.A.; Gong, S. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials, 2009, 30(30), 6065-6075.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.048] [PMID: 19674777]
[74]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44(10), 853-862.
[http://dx.doi.org/10.1021/ar2000277] [PMID: 21528865]
[75]
Chen, B.; Wu, W.; Wang, X. Magnetic iron oxide nanoparticles for tumor-targeted therapy. Curr. Cancer Drug Targets, 2011, 11(2), 184-189.
[http://dx.doi.org/10.2174/156800911794328475] [PMID: 21158723]
[76]
Scarberry, K.E.; Dickerson, E.B.; Zhang, Z.J.; Benigno, B.B.; McDonald, J.F. Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles. Nanomedicine, 2010, 6(3), 399-408.
[http://dx.doi.org/10.1016/j.nano.2009.11.003] [PMID: 19969103]
[77]
Maltas, E.; Gubbuk, I.H.; Yildiz, S. Development of doxorubicin loading platform based albumin-sporopollenin as drug carrier. Biochem. Biophys. Rep., 2016, 7, 201-205.
[http://dx.doi.org/10.1016/j.bbrep.2016.06.012] [PMID: 28955907]
[78]
Poller, J.; Zaloga, J.; Schreiber, E.; Unterweger, H.; Janko, C.; Radon, P.; Eberbeck, D.; Trahms, L.; Alexiou, C.; Friedrich, R. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int. J. Nanomedicine, 2017, 12, 3207-3220.
[http://dx.doi.org/10.2147/IJN.S132369] [PMID: 28458541]
[79]
Ahmed, M.; Douek, M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/281230] [PMID: 23936784]
[80]
Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[http://dx.doi.org/10.1007/s10439-005-9002-7] [PMID: 16496086]
[81]
Shaik, A.P.; Shaik, A.S.; Majwal, A.A.; Faraj, A.A. Blocking interleukin-4 receptor α using polyethylene glycol functionalized superparamagnetic iron oxide nanocarriers to inhibit breast cancer cell proliferation. Cancer Res. Treat., 2017, 49(2), 322-329.
[http://dx.doi.org/10.4143/crt.2016.091] [PMID: 27456946]
[82]
Wáng, Y.X.J.; Idée, J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg., 2017, 7(1), 88-122.
[http://dx.doi.org/10.21037/qims.2017.02.09] [PMID: 28275562]
[83]
Bilan, R.; Nabiev, I.; Sukhanova, A. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem, 2016, 17(22), 2103-2114.
[http://dx.doi.org/10.1002/cbic.201600357] [PMID: 27535363]
[84]
Ma, Q.; Lin, Z.H.; Yang, N.; Li, Y.; Su, X.G. A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater., 2014, 10(2), 868-874.
[http://dx.doi.org/10.1016/j.actbio.2013.10.039] [PMID: 24211611]
[85]
Zhang, H.; Yee, D.; Wang, C. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine, 2008, 3(1), 83-91.
[http://dx.doi.org/10.2217/17435889.3.1.83] [PMID: 18393668]
[86]
Pathak, S.; Cao, E.; Davidson, M.C.; Jin, S.; Silva, G.A. Quantum dot applications to neuroscience: New tools for probing neurons and glia. J. Neurosci., 2006, 26(7), 1893-1895.
[http://dx.doi.org/10.1523/JNEUROSCI.3847-05.2006] [PMID: 16481420]
[87]
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol., 2003, 21(1), 41-46.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[88]
Bae, P.K.; Chung, B.H. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies. Nano Converg., 2014, 1(1), 23.
[http://dx.doi.org/10.1186/s40580-014-0023-5] [PMID: 28191403]
[89]
Miao, P.; Han, K.; Tang, Y.; Wang, B.; Lin, T.; Cheng, W. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale, 2015, 7(5), 1586-1595.
[http://dx.doi.org/10.1039/C4NR05712K] [PMID: 25510876]
[90]
Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small, 2015, 11(14), 1620-1636.
[http://dx.doi.org/10.1002/smll.201402648] [PMID: 25521301]
[91]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[92]
Fang, M.; Peng, C.W.; Pang, D.W.; Li, Y. Quantum dots for cancer research: Current status, remaining issues, and future perspectives. Cancer Biol. Med., 2012, 9(3), 151-163.
[http://dx.doi.org/10.7497/j.issn.2095-3941.2012.03.001] [PMID: 23691472]
[93]
Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater., 2019, 31(21), 1808283.
[http://dx.doi.org/10.1002/adma.201808283] [PMID: 30828898]
[94]
Dilenko, H.; Bartoň Tománková, K.; Válková, L.; Hošíková, B.; Kolaříková, M.; Malina, L.; Bajgar, R.; Kolářová, H. Graphene-based photodynamic therapy and overcoming cancer resistance mechanisms: A comprehensive review. Int. J. Nanomedicine, 2024, 19, 5637-5680.
[http://dx.doi.org/10.2147/IJN.S461300] [PMID: 38882538]
[95]
Qi, L.; Pan, T.; Ou, L.; Ye, Z.; Yu, C.; Bao, B.; Wu, Z.; Cao, D.; Dai, L. Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Commun. Biol., 2021 Feb 16, 4(1), 214.
[http://dx.doi.org/10.1038/s42003-021-01713-1] [PMID: 33594275] [PMCID: PMC7886873]
[96]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[97]
Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets, 2011, 12(8), 1166-1186.
[http://dx.doi.org/10.2174/138945011795906624] [PMID: 21443474]
[98]
Baeza, A.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin. Drug Deliv., 2015, 12(2), 319-337.
[http://dx.doi.org/10.1517/17425247.2014.953051] [PMID: 25421898]
[99]
Zhang, J.; Yuan, Z.F.; Wang, Y.; Chen, W.H.; Luo, G.F.; Cheng, S.X.; Zhuo, R.X.; Zhang, X.Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc., 2013, 135(13), 5068-5073.
[http://dx.doi.org/10.1021/ja312004m] [PMID: 23464924]
[100]
Zhang, Y.; Xu, J. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release. R. Soc. Open Sci., 2018, 5(1), 170986.
[http://dx.doi.org/10.1098/rsos.170986] [PMID: 29410811]
[101]
Augustine, S.; Singh, J.; Srivastava, M.; Sharma, M.; Das, A.; Malhotra, B.D. Recent advances in carbon based nanosystems for cancer theranostics. Biomater. Sci., 2017, 5(5), 901-952.
[http://dx.doi.org/10.1039/C7BM00008A] [PMID: 28401206]
[102]
Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 2016, 8(9), 4799-4851.
[http://dx.doi.org/10.1039/C5NR07855E] [PMID: 26880518]
[103]
Rong, J.S.; Liu, C.; Zhang, B.; Yang, F.; Xu, J. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta, 2010, 1806(1), 29-35.
[104]
Shao, N.; Lu, S.; Wickstrom, E.; Panchapakesan, B. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology, 2007, 18(31), 315101.
[http://dx.doi.org/10.1088/0957-4484/18/31/315101]
[105]
McKernan, P.; Virani, N.A.; Faria, G.N.F.; Karch, C.G.; Prada Silvy, R.; Resasco, D.E.; Thompson, L.F.; Harrison, R.G. Targeted single-walled carbon nanotubes for photothermal therapy combined with immune checkpoint inhibition for the treatment of metastatic breast cancer. Nanoscale Res. Lett., 2021, 16(1), 9.
[http://dx.doi.org/10.1186/s11671-020-03459-x] [PMID: 33411055]
[106]
Marches, R.; Mikoryak, C.; Wang, R.H.; Pantano, P.; Draper, R.K.; Vitetta, E.S. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology, 2011, 22(9), 095101.
[http://dx.doi.org/10.1088/0957-4484/22/9/095101] [PMID: 21258147]
[107]
Madani, S.Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int. J. Nanomedicine, 2011, 6, 2963-2979.
[PMID: 22162655]
[108]
Shao, W.; Paul, A.; Rodes, L.; Prakash, S. A new carbon nanotube-based breast cancer drug delivery system: Preparation and in vitro analysis using paclitaxel. Cell Biochem. Biophys., 2015, 71(3), 1405-1414.
[http://dx.doi.org/10.1007/s12013-014-0363-0] [PMID: 27101155]
[109]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[110]
Niu, L.; Meng, L.; Lu, Q. Folate-conjugated PEG on single walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol. Biosci., 2013, 13(6), 735-744.
[http://dx.doi.org/10.1002/mabi.201200475] [PMID: 23616476]
[111]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[112]
Peng, Z.; Miyanji, E.H.; Zhou, Y.; Pardo, J.; Hettiarachchi, S.D.; Li, S.; Blackwelder, P.L.; Skromne, I.; Leblanc, R.M. Carbon dots: Promising biomaterials for bone-specific imaging and drug delivery. Nanoscale, 2017, 9(44), 17533-17543.
[http://dx.doi.org/10.1039/C7NR05731H] [PMID: 29110000]
[113]
Zingale, G.A.; Distefano, A.; Pandino, I.; Tuccitto, N.; Oliveri, V.; Gaeta, M.; D’Urso, A.; Arcoria, A.; Grasso, G. Carbon dots as a versatile tool to monitor insulin aggregation. Anal. Bioanal. Chem., 2023, 415(10), 1829-1840.
[http://dx.doi.org/10.1007/s00216-023-04585-y] [PMID: 36808276]
[114]
Hsu, P.C.; Chen, P.C.; Ou, C.M.; Chang, H.Y.; Chang, H.T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B., 2013 Apr;7;1(13), 1774-1781. Epub 2013 Feb 20.
[http://dx.doi.org/10.1039/c3tb00545c] [PMID: 32261141]
[115]
Zeng, Q.; Shao, D.; He, X.; Ren, Z.; Ji, W.; Shan, C.; Qu, S.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(30), 5119-5126.
[http://dx.doi.org/10.1039/C6TB01259K] [PMID: 32263509]
[116]
ClinicalTrials.gov Available from: https://clinicaltrials.gov (accessed on 29-7-2024)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy