Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: As cancer therapy progresses, challenges remain due to the inherent drawbacks of conventional treatments such as chemotherapy, gene therapy, radiation therapy, and surgical removal. Moreover, due to their associated side effects, conventional treatments affect both cancerous and normal cells, making photodynamic therapy (PDT) an attractive alternative.
Methods: As a result of its minimal toxicity, exceptional specificity, and non-invasive characteristics, PDT represents an innovative and highly promising cancer treatment strategy using photosensitizers (PSs) and precise wavelength excitation light to introduce reactive oxygen species (ROS) in the vicinity of cancer cells. Results: Poor aqueous solubility and decreased sensitivity of Rhodamine 6G (R6G) prevent its use as a photosensitizer in PDT, necessitating the development of oxidized sodium alginate (OSA) hydrogelated nanocarriers to enhance its bioavailability, targeted distribution, and ROS-quantum yield. The ROS quantum yield increased from 0.30 in an aqueous environment to 0.51 when using alginate-based formulations, and it was further enhanced to 0.81 in the case of OSA. Conclusion: Furthermore, the nanoformulations produced fluorescent signals suitable for use as cellular imaging agents, demonstrating contrast-enhancing capabilities in medical imaging and showing minimal toxicity.[1]
Tousian B, Khosravi AR. Chitosan-based pulmonary particulate systems for anticancer and antiviral drug carriers: A promising delivery for COVID-19 vaccines. Results Chem 2023; 6: 101146.
[http://dx.doi.org/10.1016/j.rechem.2023.101146]
[http://dx.doi.org/10.1016/j.rechem.2023.101146]
[2]
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming cancer multi-drug resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162: 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[3]
Vedakumari SW, Senthil R, Sekar S, Babu CS, Sastry TP. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin - In vitro studies on lung adenocarcinoma cell lines. Mater Chem Phys 2019; 224: 328-33.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.061]
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.061]
[4]
Gowtham P, Girigoswami K, Pallavi P, Harini K, Gurubharath I, Girigoswami A. Alginate-derivative encapsulated carbon coated manganese-ferrite nanodots for multimodal medical imaging. Pharmaceutics 2022; 14(12): 2550.
[http://dx.doi.org/10.3390/pharmaceutics14122550] [PMID: 36559045]
[http://dx.doi.org/10.3390/pharmaceutics14122550] [PMID: 36559045]
[5]
Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep 2021; 31: e00658.
[http://dx.doi.org/10.1016/j.btre.2021.e00658] [PMID: 34377681]
[http://dx.doi.org/10.1016/j.btre.2021.e00658] [PMID: 34377681]
[6]
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110(12): 1288-300.
[http://dx.doi.org/10.1016/j.bulcan.2023.08.009] [PMID: 37813754]
[http://dx.doi.org/10.1016/j.bulcan.2023.08.009] [PMID: 37813754]
[7]
Meng RY, Zhao Y, Xia HY, Wang SB, Chen AZ, Kankala RK. 2D architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies. ACS Mater Lett 2024; 6(4): 1160-77.
[http://dx.doi.org/10.1021/acsmaterialslett.3c01615]
[http://dx.doi.org/10.1021/acsmaterialslett.3c01615]
[8]
Xia HY, Li BY, Ye YT, Wang SB, Chen AZ, Kankala RK. Transition metal oxide‐decorated mxenes as drugless nanoarchitectonics for enriched nanocatalytic chemodynamic treatment. Adv Healthc Mater 2024; 13(10): 2303582.
[http://dx.doi.org/10.1002/adhm.202303582] [PMID: 38160261]
[http://dx.doi.org/10.1002/adhm.202303582] [PMID: 38160261]
[9]
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagn Photodyn Ther 2021; 34: 102091.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102091] [PMID: 33453423]
[http://dx.doi.org/10.1016/j.pdpdt.2020.102091] [PMID: 33453423]
[10]
Pallavi P, Harini K, Crowder S, et al. Rhodamine-conjugated anti-stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria. Appl Biochem Biotechnol 2023; 195(11): 6979-93.
[http://dx.doi.org/10.1007/s12010-023-04475-0] [PMID: 36976503]
[http://dx.doi.org/10.1007/s12010-023-04475-0] [PMID: 36976503]
[11]
Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for photodynamic therapy. Adv Healthc Mater 2019; 8(13): 1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[12]
Yao Q, Fan J, Long S, et al. The concept and examples of type-III photosensitizers for cancer photodynamic therapy. Chem 2022; 8(1): 197-209.
[http://dx.doi.org/10.1016/j.chempr.2021.10.006]
[http://dx.doi.org/10.1016/j.chempr.2021.10.006]
[13]
Chen D, Xu Q, Wang W, Shao J, Huang W, Dong X. Type I photosensitizers revitalizing photodynamic oncotherapy. Small 2021; 17(31): 2006742.
[http://dx.doi.org/10.1002/smll.202006742] [PMID: 34038611]
[http://dx.doi.org/10.1002/smll.202006742] [PMID: 34038611]
[14]
Yu Y, Wu S, Zhang L, et al. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials 2022; 280: 121255.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121255] [PMID: 34810034]
[http://dx.doi.org/10.1016/j.biomaterials.2021.121255] [PMID: 34810034]
[15]
Qidwai A, Annu , Nabi B, et al. Role of nanocarriers in photodynamic therapy. Photodiagn Photodyn Ther 2020; 30: 101782.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101782] [PMID: 32330611]
[http://dx.doi.org/10.1016/j.pdpdt.2020.101782] [PMID: 32330611]
[16]
Wang YY, Liu YC, Sun H, Guo DS. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord Chem Rev 2019; 395: 46-62.
[http://dx.doi.org/10.1016/j.ccr.2019.05.016]
[http://dx.doi.org/10.1016/j.ccr.2019.05.016]
[17]
Pallavi P, Harini K, Elboughdiri N, Gowtham P, Girigoswami K, Girigoswami A. Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy. ADMET DMPK 2023; 11(4): 513-31.
[http://dx.doi.org/10.5599/admet.1883] [PMID: 37937246]
[http://dx.doi.org/10.5599/admet.1883] [PMID: 37937246]
[18]
Wysocki M, Czarczynska-Goslinska B, Ziental D, Michalak M, Güzel E, Sobotta L. Excited state and reactive oxygen species against cancer and pathogens: A review on sonodynamic and sono‐photodynamic therapy. ChemMedChem 2022; 17(13): e202200185.
[http://dx.doi.org/10.1002/cmdc.202200185] [PMID: 35507015]
[http://dx.doi.org/10.1002/cmdc.202200185] [PMID: 35507015]
[19]
Pang E, Zhao S, Wang B, Niu G, Song X, Lan M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coord Chem Rev 2022; 472: 214780.
[http://dx.doi.org/10.1016/j.ccr.2022.214780]
[http://dx.doi.org/10.1016/j.ccr.2022.214780]
[20]
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109: 158-66.
[http://dx.doi.org/10.1016/j.ymeth.2016.06.025] [PMID: 27374076]
[http://dx.doi.org/10.1016/j.ymeth.2016.06.025] [PMID: 27374076]
[21]
Imran M, Zhang X, Wang Z, et al. Electron spin dynamics in excited state photochemistry: Recent development in the study of intersystem crossing and charge transfer in organic compounds. Phys Chem Chem Phys 2021; 23(30): 15835-68.
[http://dx.doi.org/10.1039/D1CP01937F] [PMID: 34318823]
[http://dx.doi.org/10.1039/D1CP01937F] [PMID: 34318823]
[22]
Anas A, Sobhanan J, Sulfiya KM, Jasmin C, Sreelakshmi PK, Biju V. Advances in photodynamic antimicrobial chemotherapy. J Photochem Photobiol Photochem Rev 2021; 49: 100452.
[http://dx.doi.org/10.1016/j.jphotochemrev.2021.100452]
[http://dx.doi.org/10.1016/j.jphotochemrev.2021.100452]
[23]
Verger A, Brandhonneur N, Molard Y, et al. From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy. Int J Pharm 2021; 604: 120763.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120763] [PMID: 34098054]
[http://dx.doi.org/10.1016/j.ijpharm.2021.120763] [PMID: 34098054]
[24]
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization reactions of biomolecules: Definition, targets and mechanisms. Photochem Photobiol 2021; 97(6): 1456-83.
[http://dx.doi.org/10.1111/php.13470] [PMID: 34133762]
[http://dx.doi.org/10.1111/php.13470] [PMID: 34133762]
[25]
Calori IR, Bi H, Tedesco AC. Expanding the limits of photodynamic therapy: The design of organelles and hypoxia-targeting nanomaterials for enhanced photokilling of cancer. ACS Appl Bio Mater 2021; 4(1): 195-228.
[http://dx.doi.org/10.1021/acsabm.0c00945] [PMID: 35014281]
[http://dx.doi.org/10.1021/acsabm.0c00945] [PMID: 35014281]
[26]
Sowa A, Voskuhl J. Host-guest complexes – Boosting the performance of photosensitizers. Int J Pharm 2020; 586: 119595.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119595] [PMID: 32629069]
[http://dx.doi.org/10.1016/j.ijpharm.2020.119595] [PMID: 32629069]
[27]
Girigoswami A, Pallavi P, Sharmiladevi P, Haribabu V, Girigoswami K. A nano approach to formulate photosensitizers for photodynamic therapy. Curr Nanosci 2022; 18(6): 675-89.
[http://dx.doi.org/10.2174/1573413718666211222162041]
[http://dx.doi.org/10.2174/1573413718666211222162041]
[28]
Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev 2020; 158: 73-90.
[http://dx.doi.org/10.1016/j.addr.2020.06.006] [PMID: 32526453]
[http://dx.doi.org/10.1016/j.addr.2020.06.006] [PMID: 32526453]
[29]
Couto GK, Seixas FK, Iglesias BA, Collares T. Perspectives of photodynamic therapy in biotechnology. J Photochem Photobiol B 2020; 213: 112051.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112051] [PMID: 33074140]
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112051] [PMID: 33074140]
[30]
Kubrak T, Karakuła M, Czop M, Kawczyk-Krupka A, Aebisher D. Advances in management of bladder cancer-the role of photodynamic therapy. Molecules 2022; 27(3): 731.
[http://dx.doi.org/10.3390/molecules27030731] [PMID: 35163996]
[http://dx.doi.org/10.3390/molecules27030731] [PMID: 35163996]
[31]
Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020; 237: 119827.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[32]
Hu JJ, Lei Q, Zhang XZ. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog Mater Sci 2020; 114: 100685.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100685]
[http://dx.doi.org/10.1016/j.pmatsci.2020.100685]
[33]
Jiménez-Mancilla NP, Aranda-Lara L, Morales-Ávila E, et al. Electron transfer reactions in Rhodamine: Potential use in photodynamic therapy. J Photochem Photobiol Chem 2021; 409: 113131.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113131]
[http://dx.doi.org/10.1016/j.jphotochem.2021.113131]
[34]
Araya-Hermosilla E, Muñoz D, Orellana S, et al. Immobilization of Rhodamine 6G in calcium alginate microcapsules based] on aromatic-aromatic interactions with poly(sodium 4-styrenesulfonate). React Funct Polym 2014; 81: 14-21.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.03.017]
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.03.017]
[35]
Lv W, Song Y, Guo R, Liu N, Mo Z. Metal-organic frame material encapsulated Rhodamine 6G: A highly sensitive fluorescence sensing platform for the detection of picric acid contaminants in water. Spectrochim Acta A Mol Biomol Spectrosc 2024; 316: 124355.
[http://dx.doi.org/10.1016/j.saa.2024.124355] [PMID: 38701575]
[http://dx.doi.org/10.1016/j.saa.2024.124355] [PMID: 38701575]
[36]
Nesterov PV, Shilovskikh VV, Sokolov AD, et al. Encapsulation of rhodamine 6G dye molecules for affecting symmetry of supramolecular crystals of melamine-barbiturate. Symmetry 2021; 13(7): 1119.
[http://dx.doi.org/10.3390/sym13071119]
[http://dx.doi.org/10.3390/sym13071119]
[37]
Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, detection, and simultaneous identification of rare circulating tumor cells based on a Rhodamine 6G-loaded metal-organic framework. ACS Appl Mater Interfaces 2021; 13(44): 52406-16.
[http://dx.doi.org/10.1021/acsami.1c15838] [PMID: 34709779]
[http://dx.doi.org/10.1021/acsami.1c15838] [PMID: 34709779]
[38]
Makovec D, Čampelj S, Bele M, et al. Nanocomposites containing embedded superparamagnetic iron oxide nanoparticles and Rhodamine 6G. Colloids Surf A Physicochem Eng Asp 2009; 334(1-3): 74-9.
[http://dx.doi.org/10.1016/j.colsurfa.2008.10.006]
[http://dx.doi.org/10.1016/j.colsurfa.2008.10.006]
[39]
Calixto GMF, de Annunzio SR, Victorelli FD, et al. Chitosan-based drug delivery systems for optimization of photodynamic therapy: A review. AAPS PharmSciTech 2019; 20(7): 253.
[http://dx.doi.org/10.1208/s12249-019-1407-y] [PMID: 31309346]
[http://dx.doi.org/10.1208/s12249-019-1407-y] [PMID: 31309346]
[40]
Xie J, Wang Y, Choi W, et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50(16): 9152-201.
[http://dx.doi.org/10.1039/D0CS01370F] [PMID: 34223847]
[http://dx.doi.org/10.1039/D0CS01370F] [PMID: 34223847]
[41]
Girigoswami K, Girigoswami A. Encapsulation of beta-lactam antibiotic amoxicillin in chitosan-alginate nanohydrogels to improve antibacterial efficacy. J Nanomed Res 2023; 8(4): 335-44.
[42]
Ps SS, Guha A, Deepika B, et al. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(12): 3407-15.
[http://dx.doi.org/10.1007/s00210-023-02608-0] [PMID: 37421430]
[http://dx.doi.org/10.1007/s00210-023-02608-0] [PMID: 37421430]
[43]
Yao B, Hu T, Cui X, Song W, Fu X, Huang S. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Biofabrication 2019; 11(4): 045020.
[http://dx.doi.org/10.1088/1758-5090/ab38ef] [PMID: 31387086]
[http://dx.doi.org/10.1088/1758-5090/ab38ef] [PMID: 31387086]
[44]
Volpatti LR, Bochenek MA, Facklam AL, et al. Partially oxidized alginate as a biodegradable carrier for glucose‐responsive insulin delivery and islet cell replacement therapy. Adv Healthc Mater 2023; 12(2): 2201822.
[http://dx.doi.org/10.1002/adhm.202201822] [PMID: 36325648]
[http://dx.doi.org/10.1002/adhm.202201822] [PMID: 36325648]
[45]
Xu Y, Li L, Yu X, Gu Z, Zhang X. Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydr Polym 2012; 87(2): 1589-95.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.059]
[http://dx.doi.org/10.1016/j.carbpol.2011.09.059]
[46]
Ghanbari M, Salavati-Niasari M, Mohandes F, Firouzi Z, Mousavi SD. The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering. J Mol Liq 2021; 335: 116531.
[http://dx.doi.org/10.1016/j.molliq.2021.116531]
[http://dx.doi.org/10.1016/j.molliq.2021.116531]
[47]
Salem DMSA, Sallam MAE, Youssef TNMA. Synthesis of compounds having antimicrobial activity from alginate. Bioorg Chem 2019; 87: 103-11.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.013] [PMID: 30878809]
[http://dx.doi.org/10.1016/j.bioorg.2019.03.013] [PMID: 30878809]
[48]
Gowtham P, Girigoswami K, Prabhu AD, Pallavi P, Thirumalai A, Harini K. Hydrogels of alginate derivative-encased nanodots] featuring carbon-coated manganese ferrite cores with gold shells to offer antiangiogenesis with multimodal imaging-based theranostics. Adv Ther 2024; 7(6): 2400054.
[http://dx.doi.org/10.1002/adtp.202400054]
[http://dx.doi.org/10.1002/adtp.202400054]
[49]
Wang W, Huang WC, Zheng J, Xue C, Mao X. Preparation and comparison of dialdehyde derivatives of polysaccharides as cross-linking agents. Int J Biol Macromol 2023; 236: 123913.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123913] [PMID: 36868335]
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123913] [PMID: 36868335]
[50]
Abou-Zeid RE, Awwad NS, Nabil S, Salama A, Youssef MA. Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol 2019; 141: 1280-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.076] [PMID: 31518618]
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.076] [PMID: 31518618]
[51]
You F, Wu X, Kelly M, Chen X. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink. Biodes Manuf 2020; 3(1): 48-59.
[http://dx.doi.org/10.1007/s42242-020-00058-8]
[http://dx.doi.org/10.1007/s42242-020-00058-8]
[52]
Vimaladevi M, Divya KC, Girigoswami A. Liposomal nanoformulations of Rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. J Photochem Photobiol B 2016; 162: 146-52.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.034] [PMID: 27371913]
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.034] [PMID: 27371913]
[53]
Shurfa MK, Girigoswami A, Sakthi Devi R, et al. Combinatorial effect of doxorubicin entrapped in alginate-chitosan hybrid polymer and cerium oxide nanocomposites on skin cancer management in mice. J Pharm Sci 2023; 112(11): 2891-900.
[http://dx.doi.org/10.1016/j.xphs.2023.08.014] [PMID: 37611665]
[http://dx.doi.org/10.1016/j.xphs.2023.08.014] [PMID: 37611665]