Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear.
Objective: The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC. Methods: The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice. Results: The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice. Conclusion: YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.[1]
Li, X.P.; He, J.; He, S.L.; Meng, J. Research progress of Aconitum vilmorinianum. Xibu Linye Kexue, 2017, 46(6), 1-7.
[http://dx.doi.org/10.16473/j.cnki.xblykx1972.2017.06.001]
[http://dx.doi.org/10.16473/j.cnki.xblykx1972.2017.06.001]
[2]
Nyirimigabo, E.; Xu, Y.; Li, Y.; Wang, Y.; Agyemang, K.; Zhang, Y. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J. Pharm. Pharmacol., 2014, 67(1), 1-19.
[http://dx.doi.org/10.1111/jphp.12310] [PMID: 25244533]
[http://dx.doi.org/10.1111/jphp.12310] [PMID: 25244533]
[3]
Xiao, P.G.; Wang, F.P.; Gao, F.; Yan, L.P.; Chen, D.L.; Liu, Y. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Zhiwu Fenlei Xuebao, 2006, 44(1), 1-46.
[http://dx.doi.org/10.1360/aps050046]
[http://dx.doi.org/10.1360/aps050046]
[4]
Yu, X.; Liu, H.; Xu, X.; Hu, Y.; Wang, X.; Wen, C. Pharmacokinetics of yunaconitine and indaconitine in mouse blood by UPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1179, 122840.
[http://dx.doi.org/10.1016/j.jchromb.2021.122840] [PMID: 34225245]
[http://dx.doi.org/10.1016/j.jchromb.2021.122840] [PMID: 34225245]
[5]
Li, X.; Fu, Y.; Qiu, H.; Xu, X.; Lin, T.; Hou, W.; Chen, W.; Zhang, R.; Liu, Z.; Zhu, L. Clinical poisoning events involving yunaconitine may be highly correlated with metabolism-based interactions: A critical role of CYP3A4. Food Chem. Toxicol., 2023, 179, 113989.
[http://dx.doi.org/10.1016/j.fct.2023.113989] [PMID: 37619830]
[http://dx.doi.org/10.1016/j.fct.2023.113989] [PMID: 37619830]
[6]
Guo, Z.J.; Duan, X.H.; Chen, C.L.; Yang, Z.Y.; Tan, W.H.; Zhou, Z.H.; Ma, X.X. A preliminary research on the efficacy and toxicity of yunaconitine and 8-deacetylyunaconitine isolated from the processed products of Aconiti knsnezoffii Radix. Zhongguo Zhongyiyao Xinxi Zazhi, 2015, 22(10), 60-63.
[http://dx.doi.org/10.3969/j.issn.1005-5304.2015.10.017]
[http://dx.doi.org/10.3969/j.issn.1005-5304.2015.10.017]
[7]
Lin, Z.G.; Cai, W.; Tang, X.C. Anti-inflammatory and analgesic actions of yunaconitine. Zhongguo Yaolixue Yu Dulixue Zazhi, 1987, 1, 93-99.
[8]
Li, X.Y.; Jiang, K.M.; Lin, Z.Y. Immunomodulating actions of yunaconitine. Zhongguo Yaolixue Yu Dulixue Zazhi, 1987, 1, 100-104.https://doi.org/CNKI:SUN:YLBS.0.1987-01-004
[9]
Hai, Q.S.; Ma, X.X.; Yang, Y.Q.; Yang, Z.Y. Comparation of three kinds of diterpenoid alkaloid from Aconitum bulleyanum diels in related pharmacodynamics and toxicity. J. Kunming. Med. Univ., 2017, 38(1), 18-22.
[http://dx.doi.org/10.3969/j.issn.1003-4706.2017.01.004]
[http://dx.doi.org/10.3969/j.issn.1003-4706.2017.01.004]
[10]
Shu, X.K.; Li, J.; Liu, F.; Lin, X.J.; Wang, X.; Song, C.X. Accelerated solvent extraction and pH -zone-refining counter-current chromatographic purification of yunaconitine and 8-deacetylyunaconitine fromA conitum vilmorinianum K om. J. Sep. Sci., 2013, 36(16), 2680-2685.
[http://dx.doi.org/10.1002/jssc.201300472] [PMID: 23784883]
[http://dx.doi.org/10.1002/jssc.201300472] [PMID: 23784883]
[11]
Zhu, D.Y.; Bai, D.L.; Tang, X.C. Recent studies on traditional Chinese medicinal plants. Drug Dev. Res., 2015, 39(2), 147-157.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199610)39:2<147:AID-DDR6>3.0.CO;2-P]
[http://dx.doi.org/10.1002/(SICI)1098-2299(199610)39:2<147:AID-DDR6>3.0.CO;2-P]
[12]
Zhang, R.P.; Chen, S.Y.; Zhou, J. Structural modification of yunaconitine. Chih. Wu. Yen. Chiu., 1998, 20(4), 474-478.
[13]
Tsoi, O.L.; Yuen, K.Y.; Leung, J.; Lam, R. A six-year review of adverse events related to yunaconitine and crassicauline A (2006-2011) in Hong Kong. Pharmacoepidemiol. Drug Saf., 2012, 21(Suppl. 3), 222.
[http://dx.doi.org/10.1111/j.1399-5448.2012.03324.x]
[http://dx.doi.org/10.1111/j.1399-5448.2012.03324.x]
[14]
Chan, T.Y.K. Aconitum alkaloid poisoning because of contamination of herbs by aconite roots. Phytother. Res., 2016, 30(1), 3-8.
[http://dx.doi.org/10.1002/ptr.5495] [PMID: 26481590]
[http://dx.doi.org/10.1002/ptr.5495] [PMID: 26481590]
[15]
Identification of yunaconitine in poisoning Case: A case report. Fa Yi Xue Za Zhi, 2022, 38(5), 693-696.
[http://dx.doi.org/10.12116/j.issn.1004-5619.2021.311101] [PMID: 36727196]
[http://dx.doi.org/10.12116/j.issn.1004-5619.2021.311101] [PMID: 36727196]
[16]
ZhaohongWang; Wang, Z.; Wen, J.; He, Y. Simultaneous determination of three Aconitum alkaloids in urine by LC-MS-MS. J. Pharm. Biomed. Anal., 2007, 45(1), 145-148.
[http://dx.doi.org/10.1016/j.jpba.2007.04.016] [PMID: 17555909]
[http://dx.doi.org/10.1016/j.jpba.2007.04.016] [PMID: 17555909]
[17]
Kono, Y.; Kawahara, I.; Shinozaki, K.; Nomura, I.; Marutani, H.; Yamamoto, A.; Fujita, T. Characterization of P-glycoprotein inhibitors for evaluating the effect of P-glycoprotein on the intestinal absorption of drugs. Pharmaceutics, 2021, 13(3), 388.
[http://dx.doi.org/10.3390/pharmaceutics13030388] [PMID: 33804018]
[http://dx.doi.org/10.3390/pharmaceutics13030388] [PMID: 33804018]
[18]
Kopecka, J.; Godel, M.; Dei, S.; Giampietro, R.; Belisario, D.C.; Akman, M.; Contino, M.; Teodori, E.; Riganti, C. Insights into P-glycoprotein inhibitors: New inducers of immunogenic cell death. Cells, 2020, 9(4), 1033.
[http://dx.doi.org/10.3390/cells9041033] [PMID: 32331368]
[http://dx.doi.org/10.3390/cells9041033] [PMID: 32331368]
[19]
Lin, J.H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharmacokinet., 2003, 42(1), 59-98.
[http://dx.doi.org/10.2165/00003088-200342010-00003] [PMID: 12489979]
[http://dx.doi.org/10.2165/00003088-200342010-00003] [PMID: 12489979]
[20]
Vaalburg, W.; Hendrikse, N.; Elsinga, P.; Bart, J.; Vanwaarde, A. P-glycoprotein activity and biological response. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 257-260.
[http://dx.doi.org/10.1016/j.taap.2005.03.027] [PMID: 16043202]
[http://dx.doi.org/10.1016/j.taap.2005.03.027] [PMID: 16043202]
[21]
Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther., 2015, 149, 1-123.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[22]
van Asperen, J.; Schinkel, A.H.; Beijnen, J.H.; Nooijen, W.J.; Borst, P.; van Tellingen, O. Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient mice. J. Natl. Cancer Inst., 1996, 88(14), 994-999.
[http://dx.doi.org/10.1093/jnci/88.14.994] [PMID: 8667431]
[http://dx.doi.org/10.1093/jnci/88.14.994] [PMID: 8667431]
[23]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[24]
Ye, L.; Yang, X.; Yang, Z.; Gao, S.; Yin, T.; Liu, W.; Wang, F.; Hu, M.; Liu, Z. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Toxicol. Lett., 2013, 216(2-3), 86-99.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.011] [PMID: 23200901]
[http://dx.doi.org/10.1016/j.toxlet.2012.11.011] [PMID: 23200901]
[25]
Li, N.; Tsao, R.; Sui, Z.; Ma, J.; Liu, Z.; Liu, Z. Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model. Planta Med., 2012, 78(7), 692-697.
[http://dx.doi.org/10.1055/s-0031-1298368] [PMID: 22411726]
[http://dx.doi.org/10.1055/s-0031-1298368] [PMID: 22411726]
[26]
Yang, C.; Li, Z.; Zhang, T.; Liu, F.; Ruan, J.; Zhang, Z. Transcellular transport of aconitine across human intestinal Caco-2 cells. Food Chem. Toxicol., 2013, 57, 195-200.
[http://dx.doi.org/10.1016/j.fct.2013.03.033] [PMID: 23562926]
[http://dx.doi.org/10.1016/j.fct.2013.03.033] [PMID: 23562926]
[27]
Yang, C.; Zhang, T.; Li, Z.; Xu, L.; Liu, F.; Ruan, J.; Liu, K.; Zhang, Z. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies. Toxicol. Appl. Pharmacol., 2013, 273(3), 561-568.
[http://dx.doi.org/10.1016/j.taap.2013.09.030] [PMID: 24120885]
[http://dx.doi.org/10.1016/j.taap.2013.09.030] [PMID: 24120885]
[28]
Zhang, J.M.; Liao, W.; He, Y.; He, Y.; Yan, D.; Fu, C.M. Study on intestinal absorption and pharmacokinetic characterization of diester diterpenoid alkaloids in precipitation derived from Fuzi–Gancao herb-pair decoction for its potential interaction mechanism investigation. J. Ethnopharmacol., 2013, 147(1), 128-135.
[http://dx.doi.org/10.1016/j.jep.2013.02.019] [PMID: 23506993]
[http://dx.doi.org/10.1016/j.jep.2013.02.019] [PMID: 23506993]
[29]
Zhu, L.; Wu, J.; Zhao, M.; Song, W.; Qi, X.; Wang, Y.; Lu, L.; Liu, Z. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics. Toxicol. Appl. Pharmacol., 2017, 320, 32-39.
[http://dx.doi.org/10.1016/j.taap.2017.02.008] [PMID: 28193520]
[http://dx.doi.org/10.1016/j.taap.2017.02.008] [PMID: 28193520]
[30]
Li, X.; Ou, X.; Luo, G.; Ou, X.; Xie, Y.; Ying, M.; Qu, W.; Zuo, H.; Qi, X.; Wang, Y.; Liu, Z.; Zhu, L. Mdr1a, Bcrp and Mrp2 regulate the efficacy and toxicity of mesaconitine and hypaconitine by altering their tissue accumulation and in vivo residence. Toxicol. Appl. Pharmacol., 2020, 409, 115332.
[http://dx.doi.org/10.1016/j.taap.2020.115332] [PMID: 33171190]
[http://dx.doi.org/10.1016/j.taap.2020.115332] [PMID: 33171190]
[31]
Gao, Y.; Fan, H.; Nie, A.; Yang, K.; Xing, H.; Gao, Z.; Yang, L.; Wang, Z.; Zhang, L. Aconitine: A review of its pharmacokinetics, pharmacology, toxicology and detoxification. J. Ethnopharmacol., 2022, 293, 115270.
[http://dx.doi.org/10.1016/j.jep.2022.115270] [PMID: 35405250]
[http://dx.doi.org/10.1016/j.jep.2022.115270] [PMID: 35405250]
[32]
Zhou, Y.P.; Jiang, J.L. Study on Fuzi——VI. Pharmacological effects of aconitine and its related compounds in Fuzi. Pharmacol. Clin. Chin. Mater. Med., 1992, 8(5), 45-48.
[http://dx.doi.org/10.13412/j.cnki.zyyl.1992.05.017]
[http://dx.doi.org/10.13412/j.cnki.zyyl.1992.05.017]
[33]
Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S.T.; Howells, D.W.; Karp, N.A.; Lazic, S.E.; Lidster, K.; MacCallum, C.J.; Macleod, M.; Pearl, E.J.; Petersen, O.H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E.S.; Silberberg, S.D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol., 2020, 18(7), e3000410.
[http://dx.doi.org/10.1371/journal.pbio.3000410] [PMID: 32663219]
[http://dx.doi.org/10.1371/journal.pbio.3000410] [PMID: 32663219]
[34]
Sauer, U.G.; Kreiling, R. The Grouping and Assessment Strategy for Organic Pigments (GRAPE): Scientific evidence to facilitate regulatory decisionmaking. Regul. Toxicol. Pharmacol., 2019, 109, 104501.
[http://dx.doi.org/10.1016/j.yrtph.2019.104501] [PMID: 31629781]
[http://dx.doi.org/10.1016/j.yrtph.2019.104501] [PMID: 31629781]
[35]
Li, Y.; Song, W.; Ou, X.; Luo, G.; Xie, Y.; Sun, R.; Wang, Y.; Qi, X.; Hu, M.; Liu, Z.; Zhu, L. Breast cancer resistance protein and multidrug resistance protein 2 determine the disposition of esculetin-7-O-glucuronide and 4-methylesculetin-7-O-glucuronide. Drug Metab. Dispos., 2019, 47(3), 203-214.
[http://dx.doi.org/10.1124/dmd.118.083493] [PMID: 30602435]
[http://dx.doi.org/10.1124/dmd.118.083493] [PMID: 30602435]
[36]
Liu, Z.Q.; Jiang, Z.H.; Liu, L.; Hu, M. Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine. Pharm. Res., 2006, 23(12), 2768-2780.
[http://dx.doi.org/10.1007/s11095-006-9100-8] [PMID: 17063398]
[http://dx.doi.org/10.1007/s11095-006-9100-8] [PMID: 17063398]
[37]
Zhang, L.; Li, T.; Wang, R.; Xu, J.; Zhou, L.; Yan, L.; Hu, Z.; Li, H.; Liu, F.; Du, W.; Tong, P.; Wu, H.; Zhang, S.; Shan, L.; Efferth, T. Evaluation of long-time decoction-detoxicated Hei-Shun-Pian (Processed Aconitium carmichaeli Debeaux Lateral root with peel) for its acute toxicity and therapeutic effect on mono-iodoacetate induced osteoarthritis. Front. Pharmacol., 2020, 11, 1053.
[http://dx.doi.org/10.3389/fphar.2020.01053] [PMID: 32848727]
[http://dx.doi.org/10.3389/fphar.2020.01053] [PMID: 32848727]
[38]
Hoffmann, S.; Kinsner-Ovaskainen, A.; Prieto, P.; Mangelsdorf, I.; Bieler, C.; Cole, T. Acute oral toxicity: Variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project. Regul. Toxicol. Pharmacol., 2010, 58(3), 395-407.
[http://dx.doi.org/10.1016/j.yrtph.2010.08.004] [PMID: 20709128]
[http://dx.doi.org/10.1016/j.yrtph.2010.08.004] [PMID: 20709128]
[39]
Food and Drugs Administration of the United States of America, Bioanalytical Method Validation Guidance for Industry. 2018. Available from:https://www.fda.gov/regulatory-information/search-fda-guidance documents/(accessed on 20-7-2024)
[40]
Gu, L.; Ma, M.; Zhang, Y.; Zhang, L.; Zhang, S.; Huang, M.; Zhang, M.; Xin, Y.; Zheng, G.; Chen, S. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regul. Toxicol. Pharmacol., 2019, 107, 104420.
[http://dx.doi.org/10.1016/j.yrtph.2019.104420] [PMID: 31295511]
[http://dx.doi.org/10.1016/j.yrtph.2019.104420] [PMID: 31295511]
[41]
Chen, S.P.L.; Ng, S.W.; Poon, W.T.; Lai, C.K.; Ngan, T.M.S.; Tse, M.L.; Chan, T.Y.K.; Chan, A.Y.W.; Mak, T.W.L. Aconite poisoning over 5 years: A case series in Hong Kong and lessons towards herbal safety. Drug Saf., 2012, 35(7), 575-587.
[http://dx.doi.org/10.2165/11597470-000000000-00000] [PMID: 22631223]
[http://dx.doi.org/10.2165/11597470-000000000-00000] [PMID: 22631223]
[42]
Hu, J.; Zhang, H.D. A case of allergic reaction caused by Yunnan Hongyao Capsule. Chin. J. Misdiagn., 2007, 6, 1417-1418.
[43]
Liu, P.X.; Liu, P.J.; Chen, J. A case of arrhythmia caused by Yunnan Hongyao Capsule. People. Mil. Surg., 2006, 049(008), 495.
[http://dx.doi.org/10.3969/j.issn.1000-9736.2006.08.047]
[http://dx.doi.org/10.3969/j.issn.1000-9736.2006.08.047]
[44]
Artursson, P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci., 1990, 79(6), 476-482.
[http://dx.doi.org/10.1002/jps.2600790604] [PMID: 1975619]
[http://dx.doi.org/10.1002/jps.2600790604] [PMID: 1975619]
[45]
van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 175-185.
[http://dx.doi.org/10.1517/17425255.1.2.175] [PMID: 16922635]
[http://dx.doi.org/10.1517/17425255.1.2.175] [PMID: 16922635]
[46]
Sakaeda, T.; Nakamura, T.; Okumura, K. MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol. Pharm. Bull., 2002, 25(11), 1391-1400.
[http://dx.doi.org/10.1248/bpb.25.1391] [PMID: 12419946]
[http://dx.doi.org/10.1248/bpb.25.1391] [PMID: 12419946]
[47]
Sakaeda, T.; Nakamura, T.; Okumura, K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics, 2003, 4(4), 397-410.
[http://dx.doi.org/10.1517/phgs.4.4.397.22747] [PMID: 12831320]
[http://dx.doi.org/10.1517/phgs.4.4.397.22747] [PMID: 12831320]
[48]
Cui, Y.J.; Cheng, X.; Weaver, Y.M.; Klaassen, C.D. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab. Dispos., 2009, 37(1), 203-210.
[http://dx.doi.org/10.1124/dmd.108.023721] [PMID: 18854377]
[http://dx.doi.org/10.1124/dmd.108.023721] [PMID: 18854377]
[49]
Schuetz, E.G.; Umbenhauer, D.R.; Yasuda, K.; Brimer, C.; Nguyen, L.; Relling, M.V.; Schuetz, J.D.; Schinkel, A.H. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol., 2000, 57(1), 188-197.
[PMID: 10617694]
[PMID: 10617694]
[50]
Ganguly, S.; Panetta, J.C.; Roberts, J.K.; Schuetz, E.G. Ketamine pharmacokinetics and pharmacodynamics are altered by P-glycoprotein and breast cancer resistance protein efflux transporters in mice. Drug Metab. Dispos., 2018, 46(7), 1014-1022.
[http://dx.doi.org/10.1124/dmd.117.078360] [PMID: 29674491]
[http://dx.doi.org/10.1124/dmd.117.078360] [PMID: 29674491]
[51]
Husain, A.; Makadia, V.; Valicherla, G.R.; Riyazuddin, M.; Gayen, J.R. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev. Res., 2022, 83(4), 825-841.
[http://dx.doi.org/10.1002/ddr.21918] [PMID: 35103340]
[http://dx.doi.org/10.1002/ddr.21918] [PMID: 35103340]
[52]
Klaassen, C.D.; Lu, H. Xenobiotic transporters: Ascribing function from gene knockout and mutation studies. Toxicol. Sci., 2008, 101(2), 186-196.
[http://dx.doi.org/10.1093/toxsci/kfm214] [PMID: 17698509]
[http://dx.doi.org/10.1093/toxsci/kfm214] [PMID: 17698509]
[53]
Murayama, M.; Ito, T.; Konno, C.; Hikino, H. Mechanism of analgesic action of mesaconitine. I. Relationship between analgesic effect and central monoamines or opiate receptors. Eur. J. Pharmacol., 1984, 101(1-2), 29-36.
[http://dx.doi.org/10.1016/0014-2999(84)90027-X] [PMID: 6086363]
[http://dx.doi.org/10.1016/0014-2999(84)90027-X] [PMID: 6086363]
[54]
Ameri, A. The effects of Aconitum alkaloids on the central nevous system. Prog Neurobiol., 1998, 56(2), 211-235.
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9]
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9]
[55]
Salehi, A.; Ghanadian, M.; Zolfaghari, B.; Jassbi, A.R.; Fattahian, M.; Reisi, P.; Csupor, D.; Khan, I.A.; Ali, Z. Neuropharmacological potential of diterpenoid alkaloids. Pharmaceuticals, 2023, 16(5), 747.
[http://dx.doi.org/10.3390/ph16050747] [PMID: 37242531]
[http://dx.doi.org/10.3390/ph16050747] [PMID: 37242531]
[56]
Fu, M.; Wu, M.; Qiao, Y.; Wang, Z. Toxicological mechanisms of Aconitum alkaloids. Pharmazie, 2006, 61(9), 735-741.
[PMID: 17020146]
[PMID: 17020146]
[57]
Zuo, H.L.; Li, X.C.; Ou, X.J.; Yang, C.H.; Liu, Z.Q.; Liang, Q.; Zhu, L.J. Study on the regulation of multidrug resistance protein 1a on the efficacytoxicity-in vivo exposure of benzoylmesaconine. Zhongyao Xinyao Yu Linchuang Yaoli, 2023, 34(7), 959-969.
[http://dx.doi.org/10.19378/j.issn.1003-9783.2023.07.012]
[http://dx.doi.org/10.19378/j.issn.1003-9783.2023.07.012]
[58]
Akamine, Y.; Yasui-Furukori, N.; Uno, T. Drug-drug interactions of P-gp substrates unrelated to CYP metabolism. Curr. Drug Metab., 2019, 20(2), 124-129.
[http://dx.doi.org/10.2174/1389200219666181003142036] [PMID: 30280663]
[http://dx.doi.org/10.2174/1389200219666181003142036] [PMID: 30280663]
[59]
Otsuka, Y.; Poondru, S.; Bonate, P.L.; Rose, R.H.; Jamei, M.; Ushigome, F.; Minematsu, T. Physiologically-based pharmacokinetic modeling to predict drug-drug interaction of enzalutamide with combined P-gp and CYP3A substrates. J. Pharmacokinet. Pharmacodyn., 2023, 50(5), 365-376.
[http://dx.doi.org/10.1007/s10928-023-09867-7] [PMID: 37344637]
[http://dx.doi.org/10.1007/s10928-023-09867-7] [PMID: 37344637]
[60]
Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drugdrug interaction studies. Clin. Pharmacokinet., 2020, 59(6), 699-714.
[http://dx.doi.org/10.1007/s40262-020-00867-1] [PMID: 32052379]
[http://dx.doi.org/10.1007/s40262-020-00867-1] [PMID: 32052379]
[61]
Li, M.; de Graaf, I.A.M.; de Jager, M.H.; Groothuis, G.M.M. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm. Drug Dispos., 2017, 38(2), 127-138.
[http://dx.doi.org/10.1002/bdd.2047] [PMID: 27757966]
[http://dx.doi.org/10.1002/bdd.2047] [PMID: 27757966]
[62]
Nguyen, T.T.L.; Duong, V.A.; Maeng, H.J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral absorption and bioavailability. Pharmaceutics, 2021, 13(7), 1103.
[http://dx.doi.org/10.3390/pharmaceutics13071103] [PMID: 34371794]
[http://dx.doi.org/10.3390/pharmaceutics13071103] [PMID: 34371794]
[63]
Lomovskaya, O.; Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochem. Pharmacol., 2006, 71(7), 910-918.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[64]
Pusztai, L.; Wagner, P.; Ibrahim, N.; Rivera, E.; Theriault, R.; Booser, D.; Symmans, F.W.; Wong, F.; Blumenschein, G.; Fleming, D.R.; Rouzier, R.; Boniface, G.; Hortobagyi, G.N. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 2005, 104(4), 682-691.
[http://dx.doi.org/10.1002/cncr.21227] [PMID: 15986399]
[http://dx.doi.org/10.1002/cncr.21227] [PMID: 15986399]
[65]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[66]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[67]
Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Targ. Insights, 2013, 7, DTI.S12519.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[68]
Bansal, T.; Mishra, G.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur. J. Pharm. Sci., 2009, 36(4-5), 580-590.
[http://dx.doi.org/10.1016/j.ejps.2008.12.005] [PMID: 19135530]
[http://dx.doi.org/10.1016/j.ejps.2008.12.005] [PMID: 19135530]
[69]
Chiney, M.S.; Menon, R.M.; Bueno, O.F.; Tong, B.; Salem, A.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin. Xenobiotica, 2018, 48(9), 904-910.
[http://dx.doi.org/10.1080/00498254.2017.1381779] [PMID: 29027832]
[http://dx.doi.org/10.1080/00498254.2017.1381779] [PMID: 29027832]
[70]
Dastvan, R.; Mishra, S.; Peskova, Y.B.; Nakamoto, R.K.; Mchaourab, H.S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science, 2019, 364(6441), 689-692.
[http://dx.doi.org/10.1126/science.aav9406] [PMID: 31097669]
[http://dx.doi.org/10.1126/science.aav9406] [PMID: 31097669]
[71]
Baumert, C.; Hilgeroth, A. Recent advances in the development of P-gp inhibitors. Anticancer. Agents Med. Chem., 2009, 9(4), 415-436.
[http://dx.doi.org/10.2174/1871520610909040415] [PMID: 19442042]
[http://dx.doi.org/10.2174/1871520610909040415] [PMID: 19442042]
[72]
Hao, D.C.; Ge, G.B.; Xiao, P.G.; Wang, P.; Yang, L. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds. Curr. Drug Metab., 2015, 16(4), 294-321.
[http://dx.doi.org/10.2174/1389200216666150803144631] [PMID: 26234707]
[http://dx.doi.org/10.2174/1389200216666150803144631] [PMID: 26234707]
[73]
Bello-Ramírez, A.M.; Nava-Ocampo, A.A. A QSAR analysis of toxicity of Aconitum alkaloids. Fundam. Clin. Pharmacol., 2004, 18(6), 699-704.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00280.x] [PMID: 15548242]
[http://dx.doi.org/10.1111/j.1472-8206.2004.00280.x] [PMID: 15548242]
[74]
Wu, J.; Lin, N.; Li, F.; Zhang, G.; He, S.; Zhu, Y.; Ou, R.; Li, N.; Liu, S.; Feng, L.; Liu, L.; Liu, Z.; Lu, L. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions. Sci. Rep., 2016, 6(1), 25343.
[http://dx.doi.org/10.1038/srep25343] [PMID: 27139035]
[http://dx.doi.org/10.1038/srep25343] [PMID: 27139035]
[75]
Sadiq, M.W.; Uchida, Y.; Hoshi, Y.; Tachikawa, M.; Terasaki, T.; Hammarlund-Udenaes, M. Validation of a P-glycoprotein (p-gp) humanized mouse model by integrating selective absolute quantification of human mdr1, mouse Mdr1a and Mdr1b protein expressions with in vivo functional analysis for blood-brain barrier transport. PLoS One, 2015, 10(5), e0118638.
[http://dx.doi.org/10.1371/journal.pone.0118638] [PMID: 25932627]
[http://dx.doi.org/10.1371/journal.pone.0118638] [PMID: 25932627]