Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Role of P-glycoprotein in Regulating the Efficacy, Toxicity and Pharmacokinetics of Yunaconitine

In Press, (this is not the final "Version of Record"). Available online 06 August, 2024
Author(s): Xiaocui Li, Qi Liang, Caiyan Wang, Huawei Qiu, Tingting Lin, Wentao Li, Rong Zhang, Zhongqiu Liu and Lijun Zhu*
Published on: 06 August, 2024

DOI: 10.2174/0113892002302427240801072910

Price: $95

Abstract

Background: Yunaconitine (YAC) is a hidden toxin that greatly threatens the life safety of patients who are prescribed herbal medicines containing Aconitum species; however, its underlying mechanism remains unclear.

Objective: The objective of this study is to elucidate the functions of P-glycoprotein (P-gp) in regulating the efficacy, toxicity, and pharmacokinetics of YAC.

Methods: The efflux function of P-gp on YAC was explored by using Caco-2 monolayers in combination with the P-gp inhibitor verapamil. The impact of P-gp on regulating the analgesic and anti-inflammatory effects, acute toxicity, tissue distribution, and pharmacokinetics of YAC was determined via male Mdr1a gene knocked-out mice and wild-type FVB mice.

Results: The presence of verapamil significantly decreased the efflux ratio of YAC from 20.41 to 1.07 in Caco- 2 monolayers (P < 0.05). Moreover, oral administration of 0.07 and 0.14 mg/kg YAC resulted in a notable decrease in writhing times in Mdr1a-/- mice by 23.53% and 49.27%, respectively, compared to wild-type FVB mice (P < 0.05). Additionally, the deficiency of P-gp remarkably decreased the half-lethal dose (LD50) of YAC from 2.13 to 0.24 mg/kg (P < 0.05). Moreover, the concentrations of YAC in the tissues of Mdr1a-/- mice were statistically higher than those in wild-type FVB mice (P < 0.05). Particularly, the brain accumulation of YAC in Mdr1a-/- mice significantly increased by 12- and 19-fold, respectively, after oral administration for 30 and 120 min, when compared to wild-type FVB mice (P < 0.05). There were no significant differences in the pharmacokinetic characteristics of YAC between Mdr1a-/- and wild-type FVB mice.

Conclusion: YAC is a sensitive substrate of P-gp. The absence of P-gp enhances the analgesic effect and toxicity of YAC by upregulating its brain accumulation. Co-administration with a P-gp inhibitor may lead to severe YAC poisoning.

[1]
Li, X.P.; He, J.; He, S.L.; Meng, J. Research progress of Aconitum vilmorinianum. Xibu Linye Kexue, 2017, 46(6), 1-7.
[http://dx.doi.org/10.16473/j.cnki.xblykx1972.2017.06.001]
[2]
Nyirimigabo, E.; Xu, Y.; Li, Y.; Wang, Y.; Agyemang, K.; Zhang, Y. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J. Pharm. Pharmacol., 2014, 67(1), 1-19.
[http://dx.doi.org/10.1111/jphp.12310] [PMID: 25244533]
[3]
Xiao, P.G.; Wang, F.P.; Gao, F.; Yan, L.P.; Chen, D.L.; Liu, Y. A pharmacophylogenetic study of Aconitum L. (Ranunculaceae) from China. Zhiwu Fenlei Xuebao, 2006, 44(1), 1-46.
[http://dx.doi.org/10.1360/aps050046]
[4]
Yu, X.; Liu, H.; Xu, X.; Hu, Y.; Wang, X.; Wen, C. Pharmacokinetics of yunaconitine and indaconitine in mouse blood by UPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1179, 122840.
[http://dx.doi.org/10.1016/j.jchromb.2021.122840] [PMID: 34225245]
[5]
Li, X.; Fu, Y.; Qiu, H.; Xu, X.; Lin, T.; Hou, W.; Chen, W.; Zhang, R.; Liu, Z.; Zhu, L. Clinical poisoning events involving yunaconitine may be highly correlated with metabolism-based interactions: A critical role of CYP3A4. Food Chem. Toxicol., 2023, 179, 113989.
[http://dx.doi.org/10.1016/j.fct.2023.113989] [PMID: 37619830]
[6]
Guo, Z.J.; Duan, X.H.; Chen, C.L.; Yang, Z.Y.; Tan, W.H.; Zhou, Z.H.; Ma, X.X. A preliminary research on the efficacy and toxicity of yunaconitine and 8-deacetylyunaconitine isolated from the processed products of Aconiti knsnezoffii Radix. Zhongguo Zhongyiyao Xinxi Zazhi, 2015, 22(10), 60-63.
[http://dx.doi.org/10.3969/j.issn.1005-5304.2015.10.017]
[7]
Lin, Z.G.; Cai, W.; Tang, X.C. Anti-inflammatory and analgesic actions of yunaconitine. Zhongguo Yaolixue Yu Dulixue Zazhi, 1987, 1, 93-99.
[8]
Li, X.Y.; Jiang, K.M.; Lin, Z.Y. Immunomodulating actions of yunaconitine. Zhongguo Yaolixue Yu Dulixue Zazhi, 1987, 1, 100-104.https://doi.org/CNKI:SUN:YLBS.0.1987-01-004
[9]
Hai, Q.S.; Ma, X.X.; Yang, Y.Q.; Yang, Z.Y. Comparation of three kinds of diterpenoid alkaloid from Aconitum bulleyanum diels in related pharmacodynamics and toxicity. J. Kunming. Med. Univ., 2017, 38(1), 18-22.
[http://dx.doi.org/10.3969/j.issn.1003-4706.2017.01.004]
[10]
Shu, X.K.; Li, J.; Liu, F.; Lin, X.J.; Wang, X.; Song, C.X. Accelerated solvent extraction and pH -zone-refining counter-current chromatographic purification of yunaconitine and 8-deacetylyunaconitine fromA conitum vilmorinianum K om. J. Sep. Sci., 2013, 36(16), 2680-2685.
[http://dx.doi.org/10.1002/jssc.201300472] [PMID: 23784883]
[11]
Zhu, D.Y.; Bai, D.L.; Tang, X.C. Recent studies on traditional Chinese medicinal plants. Drug Dev. Res., 2015, 39(2), 147-157.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199610)39:2<147:AID-DDR6>3.0.CO;2-P]
[12]
Zhang, R.P.; Chen, S.Y.; Zhou, J. Structural modification of yunaconitine. Chih. Wu. Yen. Chiu., 1998, 20(4), 474-478.
[13]
Tsoi, O.L.; Yuen, K.Y.; Leung, J.; Lam, R. A six-year review of adverse events related to yunaconitine and crassicauline A (2006-2011) in Hong Kong. Pharmacoepidemiol. Drug Saf., 2012, 21(Suppl. 3), 222.
[http://dx.doi.org/10.1111/j.1399-5448.2012.03324.x]
[14]
Chan, T.Y.K. Aconitum alkaloid poisoning because of contamination of herbs by aconite roots. Phytother. Res., 2016, 30(1), 3-8.
[http://dx.doi.org/10.1002/ptr.5495] [PMID: 26481590]
[15]
Identification of yunaconitine in poisoning Case: A case report. Fa Yi Xue Za Zhi, 2022, 38(5), 693-696.
[http://dx.doi.org/10.12116/j.issn.1004-5619.2021.311101] [PMID: 36727196]
[16]
ZhaohongWang; Wang, Z.; Wen, J.; He, Y. Simultaneous determination of three Aconitum alkaloids in urine by LC-MS-MS. J. Pharm. Biomed. Anal., 2007, 45(1), 145-148.
[http://dx.doi.org/10.1016/j.jpba.2007.04.016] [PMID: 17555909]
[17]
Kono, Y.; Kawahara, I.; Shinozaki, K.; Nomura, I.; Marutani, H.; Yamamoto, A.; Fujita, T. Characterization of P-glycoprotein inhibitors for evaluating the effect of P-glycoprotein on the intestinal absorption of drugs. Pharmaceutics, 2021, 13(3), 388.
[http://dx.doi.org/10.3390/pharmaceutics13030388] [PMID: 33804018]
[18]
Kopecka, J.; Godel, M.; Dei, S.; Giampietro, R.; Belisario, D.C.; Akman, M.; Contino, M.; Teodori, E.; Riganti, C. Insights into P-glycoprotein inhibitors: New inducers of immunogenic cell death. Cells, 2020, 9(4), 1033.
[http://dx.doi.org/10.3390/cells9041033] [PMID: 32331368]
[19]
Lin, J.H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharmacokinet., 2003, 42(1), 59-98.
[http://dx.doi.org/10.2165/00003088-200342010-00003] [PMID: 12489979]
[20]
Vaalburg, W.; Hendrikse, N.; Elsinga, P.; Bart, J.; Vanwaarde, A. P-glycoprotein activity and biological response. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 257-260.
[http://dx.doi.org/10.1016/j.taap.2005.03.027] [PMID: 16043202]
[21]
Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther., 2015, 149, 1-123.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[22]
van Asperen, J.; Schinkel, A.H.; Beijnen, J.H.; Nooijen, W.J.; Borst, P.; van Tellingen, O. Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient mice. J. Natl. Cancer Inst., 1996, 88(14), 994-999.
[http://dx.doi.org/10.1093/jnci/88.14.994] [PMID: 8667431]
[23]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[24]
Ye, L.; Yang, X.; Yang, Z.; Gao, S.; Yin, T.; Liu, W.; Wang, F.; Hu, M.; Liu, Z. The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells. Toxicol. Lett., 2013, 216(2-3), 86-99.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.011] [PMID: 23200901]
[25]
Li, N.; Tsao, R.; Sui, Z.; Ma, J.; Liu, Z.; Liu, Z. Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model. Planta Med., 2012, 78(7), 692-697.
[http://dx.doi.org/10.1055/s-0031-1298368] [PMID: 22411726]
[26]
Yang, C.; Li, Z.; Zhang, T.; Liu, F.; Ruan, J.; Zhang, Z. Transcellular transport of aconitine across human intestinal Caco-2 cells. Food Chem. Toxicol., 2013, 57, 195-200.
[http://dx.doi.org/10.1016/j.fct.2013.03.033] [PMID: 23562926]
[27]
Yang, C.; Zhang, T.; Li, Z.; Xu, L.; Liu, F.; Ruan, J.; Liu, K.; Zhang, Z. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies. Toxicol. Appl. Pharmacol., 2013, 273(3), 561-568.
[http://dx.doi.org/10.1016/j.taap.2013.09.030] [PMID: 24120885]
[28]
Zhang, J.M.; Liao, W.; He, Y.; He, Y.; Yan, D.; Fu, C.M. Study on intestinal absorption and pharmacokinetic characterization of diester diterpenoid alkaloids in precipitation derived from Fuzi–Gancao herb-pair decoction for its potential interaction mechanism investigation. J. Ethnopharmacol., 2013, 147(1), 128-135.
[http://dx.doi.org/10.1016/j.jep.2013.02.019] [PMID: 23506993]
[29]
Zhu, L.; Wu, J.; Zhao, M.; Song, W.; Qi, X.; Wang, Y.; Lu, L.; Liu, Z. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics. Toxicol. Appl. Pharmacol., 2017, 320, 32-39.
[http://dx.doi.org/10.1016/j.taap.2017.02.008] [PMID: 28193520]
[30]
Li, X.; Ou, X.; Luo, G.; Ou, X.; Xie, Y.; Ying, M.; Qu, W.; Zuo, H.; Qi, X.; Wang, Y.; Liu, Z.; Zhu, L. Mdr1a, Bcrp and Mrp2 regulate the efficacy and toxicity of mesaconitine and hypaconitine by altering their tissue accumulation and in vivo residence. Toxicol. Appl. Pharmacol., 2020, 409, 115332.
[http://dx.doi.org/10.1016/j.taap.2020.115332] [PMID: 33171190]
[31]
Gao, Y.; Fan, H.; Nie, A.; Yang, K.; Xing, H.; Gao, Z.; Yang, L.; Wang, Z.; Zhang, L. Aconitine: A review of its pharmacokinetics, pharmacology, toxicology and detoxification. J. Ethnopharmacol., 2022, 293, 115270.
[http://dx.doi.org/10.1016/j.jep.2022.115270] [PMID: 35405250]
[32]
Zhou, Y.P.; Jiang, J.L. Study on Fuzi——VI. Pharmacological effects of aconitine and its related compounds in Fuzi. Pharmacol. Clin. Chin. Mater. Med., 1992, 8(5), 45-48.
[http://dx.doi.org/10.13412/j.cnki.zyyl.1992.05.017]
[33]
Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S.T.; Howells, D.W.; Karp, N.A.; Lazic, S.E.; Lidster, K.; MacCallum, C.J.; Macleod, M.; Pearl, E.J.; Petersen, O.H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E.S.; Silberberg, S.D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol., 2020, 18(7), e3000410.
[http://dx.doi.org/10.1371/journal.pbio.3000410] [PMID: 32663219]
[34]
Sauer, U.G.; Kreiling, R. The Grouping and Assessment Strategy for Organic Pigments (GRAPE): Scientific evidence to facilitate regulatory decisionmaking. Regul. Toxicol. Pharmacol., 2019, 109, 104501.
[http://dx.doi.org/10.1016/j.yrtph.2019.104501] [PMID: 31629781]
[35]
Li, Y.; Song, W.; Ou, X.; Luo, G.; Xie, Y.; Sun, R.; Wang, Y.; Qi, X.; Hu, M.; Liu, Z.; Zhu, L. Breast cancer resistance protein and multidrug resistance protein 2 determine the disposition of esculetin-7-O-glucuronide and 4-methylesculetin-7-O-glucuronide. Drug Metab. Dispos., 2019, 47(3), 203-214.
[http://dx.doi.org/10.1124/dmd.118.083493] [PMID: 30602435]
[36]
Liu, Z.Q.; Jiang, Z.H.; Liu, L.; Hu, M. Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine. Pharm. Res., 2006, 23(12), 2768-2780.
[http://dx.doi.org/10.1007/s11095-006-9100-8] [PMID: 17063398]
[37]
Zhang, L.; Li, T.; Wang, R.; Xu, J.; Zhou, L.; Yan, L.; Hu, Z.; Li, H.; Liu, F.; Du, W.; Tong, P.; Wu, H.; Zhang, S.; Shan, L.; Efferth, T. Evaluation of long-time decoction-detoxicated Hei-Shun-Pian (Processed Aconitium carmichaeli Debeaux Lateral root with peel) for its acute toxicity and therapeutic effect on mono-iodoacetate induced osteoarthritis. Front. Pharmacol., 2020, 11, 1053.
[http://dx.doi.org/10.3389/fphar.2020.01053] [PMID: 32848727]
[38]
Hoffmann, S.; Kinsner-Ovaskainen, A.; Prieto, P.; Mangelsdorf, I.; Bieler, C.; Cole, T. Acute oral toxicity: Variability, reliability, relevance and interspecies comparison of rodent LD50 data from literature surveyed for the ACuteTox project. Regul. Toxicol. Pharmacol., 2010, 58(3), 395-407.
[http://dx.doi.org/10.1016/j.yrtph.2010.08.004] [PMID: 20709128]
[39]
Food and Drugs Administration of the United States of America, Bioanalytical Method Validation Guidance for Industry. 2018. Available from:https://www.fda.gov/regulatory-information/search-fda-guidance documents/(accessed on 20-7-2024)
[40]
Gu, L.; Ma, M.; Zhang, Y.; Zhang, L.; Zhang, S.; Huang, M.; Zhang, M.; Xin, Y.; Zheng, G.; Chen, S. Comparative pharmacokinetics of tedizolid in rat plasma and cerebrospinal fluid. Regul. Toxicol. Pharmacol., 2019, 107, 104420.
[http://dx.doi.org/10.1016/j.yrtph.2019.104420] [PMID: 31295511]
[41]
Chen, S.P.L.; Ng, S.W.; Poon, W.T.; Lai, C.K.; Ngan, T.M.S.; Tse, M.L.; Chan, T.Y.K.; Chan, A.Y.W.; Mak, T.W.L. Aconite poisoning over 5 years: A case series in Hong Kong and lessons towards herbal safety. Drug Saf., 2012, 35(7), 575-587.
[http://dx.doi.org/10.2165/11597470-000000000-00000] [PMID: 22631223]
[42]
Hu, J.; Zhang, H.D. A case of allergic reaction caused by Yunnan Hongyao Capsule. Chin. J. Misdiagn., 2007, 6, 1417-1418.
[43]
Liu, P.X.; Liu, P.J.; Chen, J. A case of arrhythmia caused by Yunnan Hongyao Capsule. People. Mil. Surg., 2006, 049(008), 495.
[http://dx.doi.org/10.3969/j.issn.1000-9736.2006.08.047]
[44]
Artursson, P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci., 1990, 79(6), 476-482.
[http://dx.doi.org/10.1002/jps.2600790604] [PMID: 1975619]
[45]
van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol., 2005, 1(2), 175-185.
[http://dx.doi.org/10.1517/17425255.1.2.175] [PMID: 16922635]
[46]
Sakaeda, T.; Nakamura, T.; Okumura, K. MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol. Pharm. Bull., 2002, 25(11), 1391-1400.
[http://dx.doi.org/10.1248/bpb.25.1391] [PMID: 12419946]
[47]
Sakaeda, T.; Nakamura, T.; Okumura, K. Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics, 2003, 4(4), 397-410.
[http://dx.doi.org/10.1517/phgs.4.4.397.22747] [PMID: 12831320]
[48]
Cui, Y.J.; Cheng, X.; Weaver, Y.M.; Klaassen, C.D. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab. Dispos., 2009, 37(1), 203-210.
[http://dx.doi.org/10.1124/dmd.108.023721] [PMID: 18854377]
[49]
Schuetz, E.G.; Umbenhauer, D.R.; Yasuda, K.; Brimer, C.; Nguyen, L.; Relling, M.V.; Schuetz, J.D.; Schinkel, A.H. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol., 2000, 57(1), 188-197.
[PMID: 10617694]
[50]
Ganguly, S.; Panetta, J.C.; Roberts, J.K.; Schuetz, E.G. Ketamine pharmacokinetics and pharmacodynamics are altered by P-glycoprotein and breast cancer resistance protein efflux transporters in mice. Drug Metab. Dispos., 2018, 46(7), 1014-1022.
[http://dx.doi.org/10.1124/dmd.117.078360] [PMID: 29674491]
[51]
Husain, A.; Makadia, V.; Valicherla, G.R.; Riyazuddin, M.; Gayen, J.R. Approaches to minimize the effects of P-glycoprotein in drug transport: A review. Drug Dev. Res., 2022, 83(4), 825-841.
[http://dx.doi.org/10.1002/ddr.21918] [PMID: 35103340]
[52]
Klaassen, C.D.; Lu, H. Xenobiotic transporters: Ascribing function from gene knockout and mutation studies. Toxicol. Sci., 2008, 101(2), 186-196.
[http://dx.doi.org/10.1093/toxsci/kfm214] [PMID: 17698509]
[53]
Murayama, M.; Ito, T.; Konno, C.; Hikino, H. Mechanism of analgesic action of mesaconitine. I. Relationship between analgesic effect and central monoamines or opiate receptors. Eur. J. Pharmacol., 1984, 101(1-2), 29-36.
[http://dx.doi.org/10.1016/0014-2999(84)90027-X] [PMID: 6086363]
[54]
Ameri, A. The effects of Aconitum alkaloids on the central nevous system. Prog Neurobiol., 1998, 56(2), 211-235.
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9]
[55]
Salehi, A.; Ghanadian, M.; Zolfaghari, B.; Jassbi, A.R.; Fattahian, M.; Reisi, P.; Csupor, D.; Khan, I.A.; Ali, Z. Neuropharmacological potential of diterpenoid alkaloids. Pharmaceuticals, 2023, 16(5), 747.
[http://dx.doi.org/10.3390/ph16050747] [PMID: 37242531]
[56]
Fu, M.; Wu, M.; Qiao, Y.; Wang, Z. Toxicological mechanisms of Aconitum alkaloids. Pharmazie, 2006, 61(9), 735-741.
[PMID: 17020146]
[57]
Zuo, H.L.; Li, X.C.; Ou, X.J.; Yang, C.H.; Liu, Z.Q.; Liang, Q.; Zhu, L.J. Study on the regulation of multidrug resistance protein 1a on the efficacytoxicity-in vivo exposure of benzoylmesaconine. Zhongyao Xinyao Yu Linchuang Yaoli, 2023, 34(7), 959-969.
[http://dx.doi.org/10.19378/j.issn.1003-9783.2023.07.012]
[58]
Akamine, Y.; Yasui-Furukori, N.; Uno, T. Drug-drug interactions of P-gp substrates unrelated to CYP metabolism. Curr. Drug Metab., 2019, 20(2), 124-129.
[http://dx.doi.org/10.2174/1389200219666181003142036] [PMID: 30280663]
[59]
Otsuka, Y.; Poondru, S.; Bonate, P.L.; Rose, R.H.; Jamei, M.; Ushigome, F.; Minematsu, T. Physiologically-based pharmacokinetic modeling to predict drug-drug interaction of enzalutamide with combined P-gp and CYP3A substrates. J. Pharmacokinet. Pharmacodyn., 2023, 50(5), 365-376.
[http://dx.doi.org/10.1007/s10928-023-09867-7] [PMID: 37344637]
[60]
Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drugdrug interaction studies. Clin. Pharmacokinet., 2020, 59(6), 699-714.
[http://dx.doi.org/10.1007/s40262-020-00867-1] [PMID: 32052379]
[61]
Li, M.; de Graaf, I.A.M.; de Jager, M.H.; Groothuis, G.M.M. P-gp activity and inhibition in the different regions of human intestine ex vivo. Biopharm. Drug Dispos., 2017, 38(2), 127-138.
[http://dx.doi.org/10.1002/bdd.2047] [PMID: 27757966]
[62]
Nguyen, T.T.L.; Duong, V.A.; Maeng, H.J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral absorption and bioavailability. Pharmaceutics, 2021, 13(7), 1103.
[http://dx.doi.org/10.3390/pharmaceutics13071103] [PMID: 34371794]
[63]
Lomovskaya, O.; Bostian, K.A. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochem. Pharmacol., 2006, 71(7), 910-918.
[http://dx.doi.org/10.1016/j.bcp.2005.12.008] [PMID: 16427026]
[64]
Pusztai, L.; Wagner, P.; Ibrahim, N.; Rivera, E.; Theriault, R.; Booser, D.; Symmans, F.W.; Wong, F.; Blumenschein, G.; Fleming, D.R.; Rouzier, R.; Boniface, G.; Hortobagyi, G.N. Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 2005, 104(4), 682-691.
[http://dx.doi.org/10.1002/cncr.21227] [PMID: 15986399]
[65]
Thomas, H.; Coley, H.M. Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Contr., 2003, 10(2), 159-165.
[http://dx.doi.org/10.1177/107327480301000207] [PMID: 12712010]
[66]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Eur. J. Pharm. Sci., 2000, 11(4), 265-283.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[67]
Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Targ. Insights, 2013, 7, DTI.S12519.
[http://dx.doi.org/10.4137/DTI.S12519] [PMID: 24023511]
[68]
Bansal, T.; Mishra, G.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur. J. Pharm. Sci., 2009, 36(4-5), 580-590.
[http://dx.doi.org/10.1016/j.ejps.2008.12.005] [PMID: 19135530]
[69]
Chiney, M.S.; Menon, R.M.; Bueno, O.F.; Tong, B.; Salem, A.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin. Xenobiotica, 2018, 48(9), 904-910.
[http://dx.doi.org/10.1080/00498254.2017.1381779] [PMID: 29027832]
[70]
Dastvan, R.; Mishra, S.; Peskova, Y.B.; Nakamoto, R.K.; Mchaourab, H.S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science, 2019, 364(6441), 689-692.
[http://dx.doi.org/10.1126/science.aav9406] [PMID: 31097669]
[71]
Baumert, C.; Hilgeroth, A. Recent advances in the development of P-gp inhibitors. Anticancer. Agents Med. Chem., 2009, 9(4), 415-436.
[http://dx.doi.org/10.2174/1871520610909040415] [PMID: 19442042]
[72]
Hao, D.C.; Ge, G.B.; Xiao, P.G.; Wang, P.; Yang, L. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds. Curr. Drug Metab., 2015, 16(4), 294-321.
[http://dx.doi.org/10.2174/1389200216666150803144631] [PMID: 26234707]
[73]
Bello-Ramírez, A.M.; Nava-Ocampo, A.A. A QSAR analysis of toxicity of Aconitum alkaloids. Fundam. Clin. Pharmacol., 2004, 18(6), 699-704.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00280.x] [PMID: 15548242]
[74]
Wu, J.; Lin, N.; Li, F.; Zhang, G.; He, S.; Zhu, Y.; Ou, R.; Li, N.; Liu, S.; Feng, L.; Liu, L.; Liu, Z.; Lu, L. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions. Sci. Rep., 2016, 6(1), 25343.
[http://dx.doi.org/10.1038/srep25343] [PMID: 27139035]
[75]
Sadiq, M.W.; Uchida, Y.; Hoshi, Y.; Tachikawa, M.; Terasaki, T.; Hammarlund-Udenaes, M. Validation of a P-glycoprotein (p-gp) humanized mouse model by integrating selective absolute quantification of human mdr1, mouse Mdr1a and Mdr1b protein expressions with in vivo functional analysis for blood-brain barrier transport. PLoS One, 2015, 10(5), e0118638.
[http://dx.doi.org/10.1371/journal.pone.0118638] [PMID: 25932627]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy