Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Comprehensive Review on the Development of Titanium Complexes as Cytotoxic Agents

In Press, (this is not the final "Version of Record"). Available online 06 August, 2024
Author(s): Nitesh Kumar*, Raj Kaushal and Pamita Awasthi
Published on: 06 August, 2024

DOI: 10.2174/0115680266317770240718080512

Price: $95

Abstract

After the discovery of cis-platin, the first metal-based anticancer drugs, budotitane, and titanocene dichloride entered clinical trials. These two classes of complexes were effective against those cell lines that are resistant to cisplatin and other platinum-based drugs. However, the main limitation of these complexes is their low hydrolytic stability. After these two classes, a third generation titanium based complex, i.e. diaminebis(phenolato)bisalkoxo, was invented, which showed more hydrolytic stability and high cytotoxicity than budotitane and titanocene dichloride. The Hydrolytic stability of complexes plays an important role in cytotoxicity. Earlier research showed that hydrolytically less stable complexes decompose rapidly into non-bioavailable moiety and become inactive. The mechanism of Ti(IV) complexes of diaminebis(phenolato)bisalkoxo is under investigation and is presumed to involve Endoplasmic Reticulum (ER) stress, which leads to apoptosis. The proposed mechanism involves the removal of ligands from the titanium complex and the binding of the Ti center to transferrin protein and its release inside the cell. Also, the structure of the ligand plays a key role in the cytotoxicity of complexes; as the bulkiness of the ligand increased, the cytotoxic nature of complexes decreased.

[1]
Rantanen, V.; Grénman, S.; Kulmala, J.; Grénman, R. Comparative evaluation of cisplatin and carboplatin sensitivity in endometrial adenocarcinoma cell lines. Br. J. Cancer, 1994, 69(3), 482-486.
[http://dx.doi.org/10.1038/bjc.1994.87] [PMID: 8123477]
[2]
Reedijk, J. Why does Cisplatin reach Guanine-n7 with competing s-donor ligands available in the cell? Chem. Rev., 1999, 99(9), 2499-2510.
[http://dx.doi.org/10.1021/cr980422f] [PMID: 11749488]
[3]
Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99(9), 2451-2466.
[http://dx.doi.org/10.1021/cr980420v] [PMID: 11749486]
[4]
Ho, J. Potential and cytotoxicity of cis-platinum complex with anti-tumor activity in combination therapy. Recent Patents Anticancer Drug Discov., 2006, 1(1), 129-134.
[http://dx.doi.org/10.2174/157489206775246485] [PMID: 18221032]
[5]
Kostova, I. Platinum complexes as anticancer agents. Recent Patents Anticancer Drug Discov., 2006, 1(1), 1-22.
[http://dx.doi.org/10.2174/157489206775246458] [PMID: 18221023]
[6]
Jakupec, M.A.; Galanski, M.S.; Keppler, B.K. Tumour-inhibiting platinum complexes-state of the art and future perspectives. Rev Physiol Biochem Pharmacol., 2003, 146, 1-54.
[7]
Tinoco, A.D.; Thomas, H.R.; Incarvito, C.D.; Saghatelian, A.; Valentine, A.M. Cytotoxicity of a Ti(IV) compound is independent of serum proteins. Proc. Natl. Acad. Sci. USA, 2012, 109(13), 5016-5021.
[http://dx.doi.org/10.1073/pnas.1119303109] [PMID: 22411801]
[8]
Tinoco, A.D.; Valentine, A.M. Ti(IV) binds to human serum transferrin more tightly than does Fe(III). J. Am. Chem. Soc., 2005, 127(32), 11218-11219.
[http://dx.doi.org/10.1021/ja052768v] [PMID: 16089431]
[9]
Keer, H.N.; Kozlowski, J.M.; Tsai, Y.C.; Lee, C.; McEwan, R.N.; Grayhack, J.T. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol., 1990, 143(2), 381-385.
[http://dx.doi.org/10.1016/S0022-5347(17)39970-6] [PMID: 1688956]
[10]
Guo, M.; Sun, H.; McArdle, H.J.; Gambling, L.; Sadler, P.J. Ti(IV) uptake and release by human serum transferrin and recognition of Ti(IV)-transferrin by cancer cells: Understanding the mechanism of action of the anticancer drug titanocene dichloride. Biochemistry, 2000, 39(33), 10023-10033.
[http://dx.doi.org/10.1021/bi000798z] [PMID: 10955990]
[11]
Peri, D.; Meker, S.; Manna, C.M.; Tshuva, E.Y. Different ortho and para electronic effects on hydrolysis and cytotoxicity of diamino bis(phenolato) “salan” Ti(IV) complexes. Inorg. Chem., 2011, 50(3), 1030-1038.
[http://dx.doi.org/10.1021/ic101693v] [PMID: 21214265]
[12]
Manna, C.M.; Armony, G.; Tshuva, E.Y. New insights on the active species and mechanism of cytotoxicity of salan-Ti(IV) complexes: A stereochemical study. Inorg. Chem., 2011, 50(20), 10284-10291.
[http://dx.doi.org/10.1021/ic201340m] [PMID: 21923127]
[13]
Manna, C.M.; Tshuva, E.Y. Markedly different cytotoxicity of the two enantiomers of C 2 -symmetrical Ti(iv) phenolato complexes; mechanistic implications. Dalton Trans., 2010, 39(5), 1182-1184.
[http://dx.doi.org/10.1039/B920786B] [PMID: 20104339]
[14]
Keller, H.J.; Keppler, B.; Schmähl, D. Antitumor activity of cis-dihalogenobis(1-phenyl-1,3-butanedionato)titanium (IV) compounds. A new class of antineoplastic agents. J. Cancer Res. Clin. Oncol., 1983, 105(1), 109-110.
[http://dx.doi.org/10.1007/BF00391842] [PMID: 6682104]
[15]
Schilling, T.; Keppler, K.B.; Heim, M.E.; Niebch, G.; Dietzfelbinger, H.; Rastetter, J.; Hanauske, A.R. Clinical phase I and pharmacokinetic trial of the new titanium complex budotitane. Invest. New Drugs, 1995, 13(4), 327-332.
[http://dx.doi.org/10.1007/BF00873139] [PMID: 8824351]
[16]
Tshuva, E.Y.; Peri, D. Modern cytotoxic titanium(IV) complexes; Insights on the enigmatic involvement of hydrolysis. Coord. Chem. Rev., 2009, 253(15-16), 2098-2115.
[http://dx.doi.org/10.1016/j.ccr.2008.11.015]
[17]
Meléndez, E. Titanium complexes in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 309-315.
[http://dx.doi.org/10.1016/S1040-8428(01)00224-4] [PMID: 12050022]
[18]
Christodoulou, C.V.; Eliopoulos, A.G.; Young, L.S.; Hodgkins, L.; Ferry, D.R.; Kerr, D.J. Anti-proliferative activity and mechanism of action of titanocene dichloride. Br. J. Cancer, 1998, 77(12), 2088-2097.
[http://dx.doi.org/10.1038/bjc.1998.352] [PMID: 9649119]
[19]
Lümmen, G.; Sperling, H.; Luboldt, H.; Otto, T.; Rübben, H.; Phase, I.I. Phase II trial of titanocene dichloride in advanced renal-cell carcinoma. Cancer Chemother. Pharmacol., 1998, 42(5), 415-417.
[http://dx.doi.org/10.1007/s002800050838] [PMID: 9771957]
[20]
Korfel, A.; Scheulen, M.E.; Schmoll, H.J.; Gründel, O.; Harstrick, A.; Knoche, M.; Fels, L.M.; Skorzec, M.; Bach, F.; Baumgart, J.; Sass, G.; Seeber, S.; Thiel, E.; Berdel, W.E.; Phase, I. Phase I clinical and pharmacokinetic study of titanocene dichloride in adults with advanced solid tumors. Clin. Cancer Res., 1998, 4(11), 2701-2708.
[PMID: 9829732]
[21]
Kröger, N.; Kleeberg, U.R.; Mross, K.; Edler, L.; Hossfeld, D.K.; Phase, I.I. Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer. Oncol. Res. Treat., 2000, 23(1), 60-62.
[http://dx.doi.org/10.1159/000027075]
[22]
Cini, M.; Bradshaw, T.D.; Woodward, S. Using titanium complexes to defeat cancer: The view from the shoulders of titans. Chem. Soc. Rev., 2017, 46(4), 1040-1051.
[http://dx.doi.org/10.1039/C6CS00860G] [PMID: 28124046]
[23]
Koepf-Maier, P.; Koepf, H. Non-platinum group metal antitumor agents. History, current status, and perspectives. Chem. Rev., 1987, 87(5), 1137-1152.
[http://dx.doi.org/10.1021/cr00081a012]
[24]
Caruso, F.; Rossi, M.; Tanski, J.; Sartori, R.; Sariego, R.; Moya, S.; Diez, S.; Navarrete, E.; Cingolani, A.; Marchetti, F.; Pettinari, C. Synthesis, structure, and antitumor activity of a novel tetranuclear titanium complex. J. Med. Chem., 2000, 43(20), 3665-3670.
[http://dx.doi.org/10.1021/jm990539b] [PMID: 11020280]
[25]
Caruso, F.; Rossi, M.; Pettinari, C. Anticancer titanium agents. Expert Opin. Ther. Pat., 2001, 11(6), 969-979.
[http://dx.doi.org/10.1517/13543776.11.6.969]
[26]
Caruso, F.; Rossi, M.; Opazo, C.; Pettinari, C. Structural features of antitumor titanium agents and related compounds. Bioinorg. Chem. Appl., 2005, 3(3-4), 317-329.
[http://dx.doi.org/10.1155/BCA.2005.317] [PMID: 18365107]
[27]
Kelter, G.; Sweeney, N.J.; Strohfeldt, K.; Fiebig, H.H.; Tacke, M. in-vitro anti-tumor activity studies of bridged and unbridged benzyl-substituted titanocenes. Anticancer Drugs, 2005, 16(10), 1091-1098.
[http://dx.doi.org/10.1097/00001813-200511000-00008] [PMID: 16222151]
[28]
Toney, J.H.; Marks, T.J. Hydrolysis chemistry of the metallocene dichlorides M(.eta.5-C5H5)2Cl2, M = titanium, vanadium, or zirconium. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents. J. Am. Chem. Soc., 1985, 107(4), 947-953.
[http://dx.doi.org/10.1021/ja00290a033]
[29]
Sun, H.; Li, H.; Weir, R.A.; Sadler, P.J. The first specific TiIV-protein complex: Potential relevance to anticancer activity of titanocenes. Angew. Chem. Int. Ed., 1998, 37(11), 1577-1579.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1577::AID-ANIE1577>3.0.CO;2-M] [PMID: 29710917]
[30]
Tinoco, A.D.; Incarvito, C.D.; Valentine, A.M. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti(IV) by human serum transferrin. J. Am. Chem. Soc., 2007, 129(11), 3444-3454.
[http://dx.doi.org/10.1021/ja068149j] [PMID: 17315875]
[31]
Gao, L.M.; Hernández, R.; Matta, J.; Meléndez, E. Synthesis, Ti(IV) intake by apotransferrin and cytotoxic properties of functionalized titanocene dichlorides. J. Biol. Inorg. Chem., 2007, 12(7), 959-967.
[http://dx.doi.org/10.1007/s00775-007-0268-0] [PMID: 17566797]
[32]
Dubler, E.; Buschmann, R.; Schmalle, H.W. Isomer abundance of bis(β-diketonato) complexes of titanium(IV). Crystal structures of the antitumor compound budotitane [TiIV(bzac)2(OEt)2] and of its dichloro-derivative [TiIV(bzac)2Cl2] (bzac=1-phenylbutane-1,3-dionate). J. Inorg. Biochem., 2003, 95(2-3), 97-104.
[http://dx.doi.org/10.1016/S0162-0134(03)00091-6] [PMID: 12763653]
[33]
Tacke, M.; Allen, L.T.; Cuffe, L.; Gallagher, W.M.; Lou, Y.; Mendoza, O.; Müller-Bunz, H.; Rehmann, F.J.K.; Sweeney, N. Novel titanocene anti-cancer drugs derived from fulvenes and titanium dichloride. J. Organomet. Chem., 2004, 689(13), 2242-2249.
[http://dx.doi.org/10.1016/j.jorganchem.2004.04.015]
[34]
O’Connor, K.; Gill, C.; Tacke, M.; Rehmann, F.J.K.; Strohfeldt, K.; Sweeney, N.; Fitzpatrick, J.M.; Watson, R.W.G. Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells. Apoptosis, 2006, 11(7), 1205-1214.
[http://dx.doi.org/10.1007/s10495-006-6796-1] [PMID: 16699961]
[35]
Pampillón, C.; Claffey, J.; Hogan, M.; Tacke, M. Novel achiral titanocene anti-cancer drugs synthesised from bis-N,N-dimethylamino fulvene and lithiated heterocyclic compounds. Biometals, 2008, 21(2), 197-204.
[http://dx.doi.org/10.1007/s10534-007-9108-5] [PMID: 17665139]
[36]
Claffey, J.; Deally, A.; Gleeson, B.; Hogan, M.; Méndez, L.M.M.; Müller-Bunz, H.; Patil, S.; Wallis, D.; Tacke, M. Pseudo-halide derivatives of titanocene Y: Synthesis and cytotoxicity studies. Metallomics, 2009, 1(6), 511-517.
[http://dx.doi.org/10.1039/b911753a] [PMID: 21305159]
[37]
Gao, L.M.; Matta, J.; Rheingold, A.L.; Meléndez, E. Synthesis, structure and biological activity of amide-functionalized titanocenyls: Improving their cytotoxic properties. J. Organomet. Chem., 2009, 694(26), 4134-4139.
[http://dx.doi.org/10.1016/j.jorganchem.2009.09.016] [PMID: 20177431]
[38]
Gao, L.M.; Meléndez, E. Cytotoxic properties of titanocenyl amides on breast cancer cell line mcf-7. Met. Based Drugs, 2010, 2010, 1-6.
[http://dx.doi.org/10.1155/2010/286298] [PMID: 20454639]
[39]
Hernández, R.; Méndez, J.; Lamboy, J.; Torres, M.; Román, F.R.; Meléndez, E. Titanium(IV) complexes: Cytotoxicity and cellular uptake of titanium(IV) complexes on caco-2 cell line. Toxicol. in vitro, 2010, 24(1), 178-183.
[http://dx.doi.org/10.1016/j.tiv.2009.09.010] [PMID: 19772913]
[40]
Meker, S.; Braitbard, O.; Hall, M.D.; Hochman, J.; Tshuva, E.Y. Specific design of titanium(IV) phenolato chelates yields stable and accessible, effective and selective anticancer agents. Chemistry, 2016, 22(29), 9986-9995.
[http://dx.doi.org/10.1002/chem.201601389] [PMID: 27320784]
[41]
Ganot, N.; Briaitbard, O.; Gammal, A.; Tam, J.; Hochman, J.; Tshuva, E.Y. in vivo anticancer activity of a nontoxic inert phenolato titanium complex: High efficacy on solid tumors alone and combined with platinum drugs. ChemMedChem, 2018, 13(21), 2290-2296.
[http://dx.doi.org/10.1002/cmdc.201800551] [PMID: 30203598]
[42]
Nahari, G.; Braitbard, O.; Larush, L.; Hochman, J.; Tshuva, E.Y. Effective oral administration of an antitumorigenic nanoformulated titanium complex. ChemMedChem, 2021, 16(1), 108-112.
[http://dx.doi.org/10.1002/cmdc.202000384] [PMID: 32657024]
[43]
Manna, C.M.; Braitbard, O.; Weiss, E.; Hochman, J.; Tshuva, E.Y. Cytotoxic salan-titanium(IV) complexes: High activity toward a range of sensitive and drug-resistant cell lines, and mechanistic insights. ChemMedChem, 2012, 7(4), 703-708.
[http://dx.doi.org/10.1002/cmdc.201100593] [PMID: 22262543]
[44]
Meker, S.; Manna, C.M.; Peri, D.; Tshuva, E.Y. Major impact of N-methylation on cytotoxicity and hydrolysis of salan Ti(IV) complexes: Sterics and electronics are intertwined. Dalton Trans., 2011, 40(38), 9802-9809.
[http://dx.doi.org/10.1039/c1dt11108f] [PMID: 21874187]
[45]
Peri, D.; Meker, S.; Shavit, M.; Tshuva, E.Y. Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C2- and C1-symmetrical Ti(IV) complexes of tetradentate diamine bis(phenolato) ligands: A new class of antitumor agents. Chemistry, 2009, 15(10), 2403-2415.
[http://dx.doi.org/10.1002/chem.200801310] [PMID: 19156656]
[46]
Miller, M.; Tshuva, E.Y. Cytotoxic Titanium(IV) Complexes of Chiral Diaminobis(phenolato) Ligands: Better combination of activity and stability by the bipyrrolidine moiety. Eur. J. Inorg. Chem., 2014, 2014(9), 1485-1491.
[http://dx.doi.org/10.1002/ejic.201301463]
[47]
Meker, S.; Margulis-Goshen, K.; Weiss, E.; Magdassi, S.; Tshuva, E.Y. High antitumor activity of highly resistant salan-titanium(IV) complexes in nanoparticles: An identified active species. Angew. Chem. Int. Ed., 2012, 51(42), 10515-10517.
[http://dx.doi.org/10.1002/anie.201205973] [PMID: 22961758]
[48]
Immel, T.A.; Groth, U.; Huhn, T.; Öhlschläger, P. Titanium salan complexes displays strong antitumor properties in vitro and in vivo in mice. PLoS One, 2011, 6(3), e17869.
[http://dx.doi.org/10.1371/journal.pone.0017869] [PMID: 21445304]
[49]
Pedko, A.; Rubanovich, E.; Tshuva, E.Y.; Shurki, A. Hydrolytically stable and cytotoxic [ONON]2Ti(IV)-type octahedral complexes. Inorg. Chem., 2022, 61(44), 17653-17661.
[http://dx.doi.org/10.1021/acs.inorgchem.2c02737] [PMID: 36273341]
[50]
Tzubery, A.; Tshuva, E.Y. Cytotoxicity and hydrolysis of trans-Ti(IV) complexes of salen ligands: Structure-activity relationship studies. Inorg. Chem., 2012, 51(3), 1796-1804.
[http://dx.doi.org/10.1021/ic202092u] [PMID: 22220885]
[51]
Tzubery, A.; Tshuva, E.Y. Cytotoxic Titanium(IV) complexes of salalen-based ligands. Eur. J. Inorg. Chem., 2017, 2017(12), 1695-1705.
[http://dx.doi.org/10.1002/ejic.201601200]
[52]
Shavit, M.; Peri, D.; Manna, C.M.; Alexander, J.S.; Tshuva, E.Y. Active cytotoxic reagents based on non-metallocene non-diketonato well-defined C2-symmetrical titanium complexes of tetradentate bis(phenolato) ligands. J. Am. Chem. Soc., 2007, 129(40), 12098-12099.
[http://dx.doi.org/10.1021/ja0753086] [PMID: 17877357]
[53]
Tzubery, A.; Melamed-Book, N.; Tshuva, E.Y. Fluorescent antitumor titanium( IV ) salen complexes for cell imaging. Dalton Trans., 2018, 47(11), 3669-3673.
[http://dx.doi.org/10.1039/C7DT04828A] [PMID: 29451281]
[54]
Miller, M.; Mellul, A.; Braun, M.; Sherill-Rofe, D.; Cohen, E.; Shpilt, Z.; Unterman, I.; Braitbard, O.; Hochman, J.; Tshuva, E.Y.; Tabach, Y. Titanium tackles the endoplasmic reticulum: A first genomic study on a titanium anticancer metallodrug. iScience, 2020, 23(7), 101262.
[http://dx.doi.org/10.1016/j.isci.2020.101262] [PMID: 32585595]
[55]
Nahari, G.; Hoffman, R.E.; Tshuva, E.Y. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection. J. Inorg. Biochem., 2021, 221, 111492.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111492] [PMID: 34051630]
[56]
Shpilt, Z.; Tshuva, E.Y. Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. J. Inorg. Biochem., 2022, 232, 111817.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111817] [PMID: 35421765]
[57]
Tinoco, A.D.; Eames, E.V.; Valentine, A.M. Reconsideration of serum Ti(IV) transport: Albumin and transferrin trafficking of Ti(IV) and its complexes. J. Am. Chem. Soc., 2008, 130(7), 2262-2270.
[http://dx.doi.org/10.1021/ja076364+] [PMID: 18225897]
[58]
Tinoco, A.D.; Eames, E.V.; Incarvito, C.D.; Valentine, A.M. Hydrolytic metal with a hydrophobic periphery: Titanium(IV) complexes of naphthalene-2,3-diolate and interactions with serum albumin. Inorg. Chem., 2008, 47(18), 8380-8390.
[http://dx.doi.org/10.1021/ic800529v] [PMID: 18710217]
[59]
Shavit, M.; Peri, D.; Melman, A.; Tshuva, E.Y. Antitumor reactivity of non-metallocene titanium complexes of oxygen-based ligands: Is ligand lability essential? J. Biol. Inorg. Chem., 2007, 12(6), 825-830.
[http://dx.doi.org/10.1007/s00775-007-0236-8] [PMID: 17483967]
[60]
Williamson, E.A.; Boyle, T.J.; Raymond, R.; Farrington, J.; Verschraegen, C.; Shaheen, M.; Hromas, R. Cytotoxic activity of the titanium alkoxide (OPy)2Ti(4AP)2 against cancer colony forming cells. Invest. New Drugs, 2012, 30(1), 114-120.
[http://dx.doi.org/10.1007/s10637-010-9530-3] [PMID: 20820908]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy