Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats

In Press, (this is not the final "Version of Record"). Available online 06 August, 2024
Author(s): Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou* and Wei Wei*
Published on: 06 August, 2024

DOI: 10.2174/0113892002299923240801092101

Price: $95

Abstract

Objective: Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis.

Methods: Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed.

Results: In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo.

Conclusion: The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.

[1]
Ponnapalli, M.G.; Annam, S.C.H.V.A.R.; Ravirala, S.; Sukki, S.; Ankireddy, M.; Tuniki, V.R. Unusual isomeric corniculatolides from mangrove, Aegiceras corniculatum. J. Nat. Prod., 2012, 75(2), 275-279.
[http://dx.doi.org/10.1021/np200789s] [PMID: 22316191]
[2]
Bandaranayake, W.M. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes, 1998, 2(3), 133-148.
[http://dx.doi.org/10.1023/A:1009988607044]
[3]
Patera, N.A.; Triandala, S.M.; Putera, N.A.; Shoffa, P.M.; Yuniar, R.D.R.; Dhea, K.V.; Faradilla, R.N.; Devijanti, R.R. Anti-periodontopathogenic ability of mangrove Leaves (Aegiceras corniculatum) ethanol extract: In silico and in vitro study. Eur. J. Dent., 2023, 17(01), 46-56.
[http://dx.doi.org/10.1055/s-0041-1741374] [PMID: 35453169]
[4]
Janmanchi, H.; Raju, A.; Degani, M.S.; Ray, M.K.; Rajan, M.G.R. Antituberculosis, antibacterial and antioxidant activities of Aegiceras corniculatum, a mangrove plant and effect of various extraction processes on its phytoconstituents and bioactivity. S. Afr. J. Bot., 2017, 113, 421-427.
[http://dx.doi.org/10.1016/j.sajb.2017.09.019]
[5]
Advances in medicinal research of Aegiceras corniculatum. J. Liaoning. Uni. Trad. Chinese, 2017, 19(11), 114-117.
[6]
Ding, L.; Dahse, H.M.; Hertweck, C. cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum. J. Nat. Prod., 2012, 75(4), 617-621.
[http://dx.doi.org/10.1021/np2008544] [PMID: 22439674]
[7]
Das Gitishree, G.S.; Kishore, M.Y.; Kumar, P.J. Mangrove plants: A potential source for anticancer drugs. Indian J. Geo-Mar. Sci., 2015, 44(5), 666-672.
[8]
Li, Y.; Dong, C.; Xu, M.J.; Lin, W.H. New alkylated benzoquinones from mangrove plant Aegiceras corniculatum with anticancer activity. J. Asian Nat. Prod. Res., 2020, 22(2), 121-130.
[http://dx.doi.org/10.1080/10286020.2018.1540604] [PMID: 30614270]
[9]
Vinh, L.B.; Nguyet, N.T.M.; Yang, S.Y.; Kim, J.H.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Minh, C.V.; Hwang, I.; Kim, Y.H. Cytotoxic triterpene saponins from the mangrove Aegiceras corniculatum. Nat. Prod. Res., 2019, 33(5), 628-634.
[http://dx.doi.org/10.1080/14786419.2017.1402320] [PMID: 29143535]
[10]
Hua, L.; Hao, E.; Tan, D.; Du Zhengcai, F.X.; Hou, X.; Deng, J. Anti-prostate cancer activities of n-butanol entract in Aegiceras corniculatum leaves in vitro. J. Chinese Medi. Mat., 2018, 41(8), 1975-1979.
[11]
Tan, D.; Hua, L.; Deng, J.; Hao, E.; Yi, X.; Feng, X.; Wei, L.; Xia, Z.; Xu, W.; Xie, J.; Hou, X. Screening antitumor activity of four mangrove plants in Guangxi coastal area. Guangxi Zhi Wu, 2018, 38(10), 1267-1276.
[12]
Luo, H.; Hao, E.; Tan, D.; Wei, W.; Xie, J.; Feng, X.; Du, Z.; Huang, C.; Bai, G.; Hou, Y.; Cheng, C.; Yi, X.; Wang, Y.; Hou, X.; Deng, J. Apoptosis effect of Aegiceras corniculatum on human colorectal cancer via activation of FoxO signaling pathway. Food Chem. Toxicol., 2019, 134, 110861.
[http://dx.doi.org/10.1016/j.fct.2019.110861] [PMID: 31585132]
[13]
García-Sosa, K.; Sánchez-Medina, A.; Álvarez, S.L.; Zacchino, S.; Veitch, N.C.; Simá-Polanco, P.; Peña-Rodriguez, L.M. Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea. Nat. Prod. Res., 2011, 25(12), 1185-1189.
[http://dx.doi.org/10.1080/14786419.2010.511215] [PMID: 21740284]
[14]
Sánchez-Medina, A.; Peña-Rodríguez, L.M.; May-Pat, F.; Karagianis, G.; Waterman, P.G.; Mallet, A.I.; Habtemariam, S. Identification of Sakurasosaponin as a cytotoxic principle from Jacquinia flammea. Nat. Prod. Commun., 2010, 5(3), 365-368.
[http://dx.doi.org/10.1177/1934578X1000500304] [PMID: 20420308]
[15]
Song, I.S.; Jeong, Y.J.; Kim, J.; Seo, K.H.; Baek, N.I.; Kim, Y.; Kim, C.S.; Jang, S.W. Pharmacological inhibition of androgen receptor expression induces cell death in prostate cancer cells. Cell. Mol. Life Sci., 2020, 77(22), 4663-4673.
[http://dx.doi.org/10.1007/s00018-019-03429-2] [PMID: 31894360]
[16]
Seo, Y.; Lim, C.; Lee, J.; Kim, J.; Kim, Y.; Lee, P.; Jang, S.W. Sakurasosaponin inhibits lung cancer cell proliferation by inducing autophagy via AMPK activation. Oncol. Lett., 2023, 26(6), 501-560.
[http://dx.doi.org/10.3892/ol.2023.14088] [PMID: 37920436]
[17]
Baky, M.H.; Elsaid, M.B.; Farag, M.A. Phytochemical and biological diversity of triterpenoid saponins from family Sapotaceae: A comprehensive review. Phytochemistry, 2022, 202, 113345.
[http://dx.doi.org/10.1016/j.phytochem.2022.113345] [PMID: 35952770]
[18]
Wei, S.; Wei, Z.; Jie, Z.; Tao, Z.; Liu, S.; Yu, L.; Ma, B. Metabolism of saponins from Traditional Chinese medicines: A review. Acta Pharmaceu. Sinica., 2018, 53(10), 1609-1619.
[19]
Pan, H.; Yao, C.; Yang, W.; Yao, S.; Huang, Y.; Zhang, Y.; Wu, W.; Guo, D. An enhanced strategy integrating offline two-dimensional separation and step-wise precursor ion list-based raster-mass defect filter: Characterization of indole alkaloids in five botanical origins of Uncariae Ramulus Cum Unicis as an exemplary application. J. Chromatogr. A, 2018, 1563, 124-134.
[http://dx.doi.org/10.1016/j.chroma.2018.05.066] [PMID: 29880214]
[20]
Dong, F.; Wang, S.; Yang, A.; Li, Q.; Wang, Y.; Dai, L.; Tao, Y.; Wei, X.; Zhang, J. Systematic screening and characterization of cardamonin metabolites using UHPLC-Q-Exactive Orbitrap MS after oral administration to rats. Arab. J. Chem., 2020, 13(12), 8768-8782.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.007]
[21]
Yu, C.; Wang, F.; Liu, X.; Miao, J.; Tang, S.; Jiang, Q.; Tang, X.; Gao, X. Corydalis Rhizoma as a model for herb-derived trace metabolites exploration: A cross-mapping strategy involving multiple doses and samples. J. Pharm. Anal., 2021, 11(3), 308-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.006] [PMID: 34277119]
[22]
Wei, W.L.; Li, H.J.; Yang, W.Z.; Qu, H.; Li, Z.W.; Yao, C.L.; Hou, J.J.; Wu, W.Y.; Guo, D.A. An integrated strategy for comprehensive characterization of metabolites and metabolic profiles of bufadienolides from Venenum bufonis in rats. J. Pharm. Anal., 2022, 12(1), 136-144.
[http://dx.doi.org/10.1016/j.jpha.2021.02.003] [PMID: 35573889]
[23]
Shang, Z.; Cai, W.; Cao, Y.; Wang, F.; Wang, Z.; Lu, J.; Zhang, J. An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery. J. Pharm. Biomed. Anal., 2017, 146, 387-401.
[http://dx.doi.org/10.1016/j.jpba.2017.09.012] [PMID: 28918329]
[24]
Yu, Y.; Yao, C.; Guo, D. Insight into chemical basis of Traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-Mass spectrometry. Acta Pharm. Sin. B, 2021, 11(6), 1469-1492.
[http://dx.doi.org/10.1016/j.apsb.2021.02.017] [PMID: 34221863]
[25]
Wei, W.; Li, S.; Hao, E.; Pan, X.; Xie, J.; Du, Z.; Hou, X.; Deng, J. Rapid chemical profiling of compound huanggen granules and absorbed prototypes in cynomolgus monkey plasma by integrating uhplc-q-tof-ms e method and data post-processing strategy. Curr. Drug Metab., 2022, 23(8), 652-665.
[http://dx.doi.org/10.2174/1389200223666220817112937] [PMID: 35980053]
[26]
Sleno, L. The use of mass defect in modern mass spectrometry. J. Mass Spectrom., 2012, 47(2), 226-236.
[http://dx.doi.org/10.1002/jms.2953] [PMID: 22359333]
[27]
Zhu, M.; Ma, L.; Zhang, D.; Ray, K.; Zhao, W.; Humphreys, W.G.; Skiles, G.; Sanders, M.; Zhang, H. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab. Dispos., 2006, 34(10), 1722-1733.
[http://dx.doi.org/10.1124/dmd.106.009241] [PMID: 16815965]
[28]
Navarro del Hierro, J.; Herrera, T.; Fornari, T.; Reglero, G.; Martin, D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J. Funct. Foods, 2018, 40, 484-497.
[http://dx.doi.org/10.1016/j.jff.2017.11.032]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy