Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Synthesis of Antioxidant Derivatives: Pharmacological Insights for Neurological Disorders

In Press, (this is not the final "Version of Record"). Available online 02 August, 2024
Author(s): Kuldeep Singh*, Jeetendra Kumar Gupta, Pranshul Sethi, Sojomon Mathew, Alok Bhatt, Mukesh Chandra Sharma, Sunam Saha, Shamim and Shivendra Kumar
Published on: 02 August, 2024

DOI: 10.2174/0115680266305736240725052825

Price: $95

Abstract

Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative dis-eases. The quest for effective therapeutic agents has led to significant advancements in the syn-thesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applica-tions in the management of neurological disorders. The discussed compounds encompass a di-verse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid mole-cules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to pro-vide effective treatments for these debilitating conditions and improve the quality of life for pa-tients.

[1]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[2]
Chandel, N.S.; Tuveson, D.A. The promise and perils of antioxidants for cancer patients. N. Engl. J. Med., 2014, 371(2), 177-178.
[http://dx.doi.org/10.1056/NEJMcibr1405701] [PMID: 25006725]
[3]
Samantaray, P.K.; Indrakumar, S.; Chatterjee, K.; Agarwal, V.; Bose, S. ‘Template-free’ hierarchical MoS 2 foam as a sustainable ‘green’ scavenger of heavy metals and bacteria in point of use water purification. Nanoscale Adv., 2020, 2(7), 2824-2834.
[http://dx.doi.org/10.1039/C9NA00747D] [PMID: 36132388]
[4]
Saikolappan, S.; Kumar, B.; Shishodia, G.; Koul, S.; Koul, H.K. Reactive oxygen species and cancer: A complex interaction. Cancer Lett., 2019, 452, 132-143.
[http://dx.doi.org/10.1016/j.canlet.2019.03.020] [PMID: 30905813]
[5]
Agarwal, V.; Chatterjee, K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale, 2018, 10(35), 16365-16397.
[http://dx.doi.org/10.1039/C8NR04284E] [PMID: 30151537]
[6]
Simpson, D.S.A.; Oliver, P.L. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants, 2020, 9(8), 743.
[http://dx.doi.org/10.3390/antiox9080743] [PMID: 32823544]
[7]
Nadeem, A.; Masood, A.; Siddiqui, N. Review: Oxidant—antioxidant imbalance in asthma: Scientific evidence, epidemiological data and possible therapeutic options. Ther. Adv. Respir. Dis., 2008, 2(4), 215-235.
[http://dx.doi.org/10.1177/1753465808094971] [PMID: 19124374]
[8]
Diaz, M.N.; Frei, B.; Vita, J.A.; Keaney, J.F., Jr Antioxidants and atherosclerotic heart disease. N. Engl. J. Med., 1997, 337(6), 408-416.
[http://dx.doi.org/10.1056/NEJM199708073370607] [PMID: 9241131]
[9]
Lu, L.Y.; Ou, N.; Lu, Q.B. Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci. Rep., 2013, 3(1), 3169.
[http://dx.doi.org/10.1038/srep03169] [PMID: 24201298]
[10]
Milbourn, H.R.; Toomey, L.M.; Gavriel, N.; Gray, C.G.G.; Gough, A.H.; Fehily, B.; Giacci, M.K.; Fitzgerald, M. Limiting oxidative stress following neurotrauma with a combination of ion channel inhibitors. Discov. Med., 2017, 23(129), 361-369.
[PMID: 28877447]
[11]
Giacci, M.K.; Bartlett, C.A.; Smith, N.M.; Iyer, K.S.; Toomey, L.M.; Jiang, H.; Guagliardo, P.; Kilburn, M.R.; Fitzgerald, M. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo. J. Neurosci., 2018, 38(29), 6491-6504.
[http://dx.doi.org/10.1523/JNEUROSCI.1898-17.2018] [PMID: 29915135]
[12]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid Med Cell Longev., 2017, 2017, 2525967.
[http://dx.doi.org/10.1155/2017/2525967]
[13]
Yeung, A.W.K.; Tzvetkov, N.T.; Georgieva, M.G.; Ognyanov, I.V.; Kordos, K.; Jóźwik, A.; Kühl, T.; Perry, G.; Petralia, M.C.; Mazzon, E.; Atanasov, A.G. Reactive oxygen species and their impact in neurodegenerative diseases: Literature landscape analysis. Antioxid. Redox Signal., 2021, 34(5), 402-420.
[http://dx.doi.org/10.1089/ars.2019.7952] [PMID: 32030995]
[14]
Lee, Y.M.; He, W.; Liou, Y.C. The redox language in neurodegenerative diseases: Oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis., 2021, 12(1), 58.
[http://dx.doi.org/10.1038/s41419-020-03355-3] [PMID: 33431811]
[15]
Halliwell, B. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging, 2001, 18(9), 685-716.
[http://dx.doi.org/10.2165/00002512-200118090-00004] [PMID: 11599635]
[16]
Greenlee, H.; Kwan, M.L.; Kushi, L.H.; Song, J.; Castillo, A.; Weltzien, E.; Quesenberry, C.P., Jr; Caan, B.J. Antioxidant supplement use after breast cancer diagnosis and mortality in the life after cancer epidemiology (LACE) cohort. Cancer, 2012, 118(8), 2048-2058.
[http://dx.doi.org/10.1002/cncr.26526] [PMID: 21953120]
[17]
Pantavos, A.; Ruiter, R.; Feskens, E.F.; de Keyser, C.E.; Hofman, A.; Stricker, B.H.; Franco, O.H.; Kiefte-de Jong, J.C. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: The R otterdam study. Int. J. Cancer, 2015, 136(9), 2178-2186.
[http://dx.doi.org/10.1002/ijc.29249] [PMID: 25284450]
[18]
Milisav, I.; Ribarič, S.; Poljsak, B. Antioxidant vitamins and ageing. Subcell. Biochem., 2018, 90, 1-23.
[http://dx.doi.org/10.1007/978-981-13-2835-0_1]
[19]
Ristow, M. Unraveling the truth about antioxidants: Mitohormesis explains ROS-induced health benefits. Nat. Med., 2014, 20(7), 709-711.
[http://dx.doi.org/10.1038/nm.3624] [PMID: 24999941]
[20]
Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem., 2007, 18(9), 567-579.
[http://dx.doi.org/10.1016/j.jnutbio.2006.10.007] [PMID: 17360173]
[21]
Parekattil, S.J.; Esteves, S.C.; Agarwal, A. Eds.; Male Infertility: Contemporary clinical approaches, andrology, ART & antioxidants; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-3335-4]
[22]
Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem., 2017, 216, 342-346.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.075] [PMID: 27596429]
[23]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[24]
Wang, X.; Michaelis, E.K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci., 2010, 2, 12.
[http://dx.doi.org/10.3389/fnagi.2010.00012] [PMID: 20552050]
[25]
Patki, G.; Allam, F.H.; Atrooz, F.; Dao, A.T.; Solanki, N.; Chugh, G.; Asghar, M.; Jafri, F.; Bohat, R.; Alkadhi, K.A.; Salim, S. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats. PLoS One, 2013, 8(9), e74522.
[http://dx.doi.org/10.1371/journal.pone.0074522] [PMID: 24040270]
[26]
Masood, A.; Nadeem, A.; Mustafa, S.J.; O’Donnell, J.M. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J. Pharmacol. Exp. Ther., 2008, 326(2), 369-379.
[http://dx.doi.org/10.1124/jpet.108.137208] [PMID: 18456873]
[27]
McEwen, B.S. Understanding the potency of stressful early life experiences on brain and body function. Metabolism, 2008, 57(Suppl. 2), S11-S15.
[http://dx.doi.org/10.1016/j.metabol.2008.07.006] [PMID: 18803958]
[28]
Huang, Y.; Coupland, N.J.; Lebel, R.M.; Carter, R.; Seres, P.; Wilman, A.H.; Malykhin, N.V. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biol. Psychiatry, 2013, 74(1), 62-68.
[http://dx.doi.org/10.1016/j.biopsych.2013.01.005] [PMID: 23419546]
[29]
Chang, B.J.; Jang, B.J.; Son, T.G.; Cho, I.H.; Quan, F.S.; Choe, N.H.; Nahm, S.S.; Lee, J.H. Ascorbic acid ameliorates oxidative damage induced by maternal low-level lead exposure in the hippocampus of rat pups during gestation and lactation. Food Chem. Toxicol., 2012, 50(2), 104-108.
[http://dx.doi.org/10.1016/j.fct.2011.09.043] [PMID: 22056337]
[30]
Leuner, B.; Shors, T.J. Stress, anxiety, and dendritic spines: What are the connections? Neuroscience, 2013, 251, 108-119.
[http://dx.doi.org/10.1016/j.neuroscience.2012.04.021] [PMID: 22522470]
[31]
Liston, C.; McEwen, B.S.; Casey, B.J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl. Acad. Sci. USA, 2009, 106(3), 912-917.
[http://dx.doi.org/10.1073/pnas.0807041106] [PMID: 19139412]
[32]
Rai, S.; Kamat, P.K.; Nath, C.; Shukla, R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J. Neuroimmunol., 2013, 254(1-2), 1-9.
[http://dx.doi.org/10.1016/j.jneuroim.2012.08.008] [PMID: 23021418]
[33]
Haxaire, C.; Turpin, F.R.; Potier, B.; Kervern, M.; Sinet, P.M.; Barbanel, G.; Mothet, J.P.; Dutar, P.; Billard, J.M. Reversal of age‐related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d ‐serine‐dependent NMDA receptor activation. Aging Cell, 2012, 11(2), 336-344.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00792.x] [PMID: 22230264]
[34]
Adibhatla, R.M.; Hatcher, J.F. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2010, 12(1), 125-169.
[http://dx.doi.org/10.1089/ars.2009.2668] [PMID: 19624272]
[35]
Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A.L.; Binder, C.J.; Stöckl, J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal., 2010, 12(8), 1009-1059.
[http://dx.doi.org/10.1089/ars.2009.2597] [PMID: 19686040]
[36]
Kura, B.; Szeiffova Bacova, B.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative stress-responsive microRNAs in heart injury. Int. J. Mol. Sci., 2020, 21(1), 358.
[http://dx.doi.org/10.3390/ijms21010358] [PMID: 31948131]
[37]
Ma, F.; Wu, T.; Zhao, J.; Ji, L.; Song, A.; Zhang, M.; Huang, G. Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimer’s disease: A case-control study. Nutrients, 2017, 9(7), 725.
[http://dx.doi.org/10.3390/nu9070725] [PMID: 28698453]
[38]
Peña-Bautista, C.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Lipid peroxidation in neurodegeneration. Clin. Chim. Acta, 2019, 497, 178-188.
[http://dx.doi.org/10.1016/j.cca.2019.07.037] [PMID: 31377127]
[39]
Tong, B.C.K.; Wu, A.J.; Li, M.; Cheung, K.H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(11), 1745-1760.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.018] [PMID: 30059692]
[40]
Abarikwu, S.O.; Pant, A.B.; Farombi, E.O. 4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells. Basic Clin. Pharmacol. Toxicol., 2012, 110(5), 441-448.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00834.x] [PMID: 22118713]
[41]
Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem., 2019, 294(51), 19683-19708.
[http://dx.doi.org/10.1074/jbc.REV119.006217] [PMID: 31672919]
[42]
Hauck, A.K.; Huang, Y.; Hertzel, A.V.; Bernlohr, D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem., 2019, 294(4), 1083-1088.
[http://dx.doi.org/10.1074/jbc.R118.003214] [PMID: 30563836]
[43]
Kieroń, M.; Żekanowski, C.; Falk, A.; Wężyk, M. Oxidative DNA damage signalling in neural stem cells in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/2149812] [PMID: 31814869]
[44]
Ke, S.; Yang, Z.; Yang, F.; Wang, X.; Tan, J.; Liao, B. Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer’s disease. Yonsei Med. J., 2019, 60(7), 640-650.
[http://dx.doi.org/10.3349/ymj.2019.60.7.640] [PMID: 31250578]
[45]
Ahmad, W.; Ijaz, B.; Shabbiri, K.; Ahmed, F.; Rehman, S. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation. J. Biomed. Sci., 2017, 24(1), 76.
[http://dx.doi.org/10.1186/s12929-017-0379-z] [PMID: 28927401]
[46]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[47]
Baloyannis, S.J.; Costa, V.; Baloyannis, I.S. Morphological alterations of the synapses in the locus coeruleus in Parkinson’s disease. J. Neurol. Sci., 2006, 248(1-2), 35-41.
[http://dx.doi.org/10.1016/j.jns.2006.05.006] [PMID: 16753180]
[48]
Wakabayashi, K.; Tanji, K.; Mori, F.; Takahashi, H. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of α‐synuclein aggregates. Neuropathology, 2007, 27(5), 494-506.
[http://dx.doi.org/10.1111/j.1440-1789.2007.00803.x] [PMID: 18018486]
[49]
Surendran, S.; Rajasankar, S. Parkinson’s disease: Oxidative stress and therapeutic approaches. Neurol. Sci., 2010, 31(5), 531-540.
[http://dx.doi.org/10.1007/s10072-010-0245-1] [PMID: 20221655]
[50]
Manning-Bog, A.B.; McCormack, A.L.; Li, J.; Uversky, V.N.; Fink, A.L.; Di Monte, D.A. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: Paraquat and alpha-synuclein. J. Biol. Chem., 2002, 277(3), 1641-1644.
[http://dx.doi.org/10.1074/jbc.C100560200] [PMID: 11707429]
[51]
Gille, G.; Reichmann, H. Iron-dependent functions of mitochondria—relation to neurodegeneration. J. Neural Transm. (Vienna), 2011, 118(3), 349-359.
[http://dx.doi.org/10.1007/s00702-010-0503-7] [PMID: 21161302]
[52]
Wakamatsu, K.; Fujikawa, K.; Zucca, F.A.; Zecca, L.; Ito, S. The structure of neuromelanin as studied by chemical degradative methods. J. Neurochem., 2003, 86(4), 1015-1023.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01917.x] [PMID: 12887698]
[53]
Lotharius, J.; Brundin, P. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet., 2002, 11(20), 2395-2407.
[http://dx.doi.org/10.1093/hmg/11.20.2395] [PMID: 12351575]
[54]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[55]
Ahmed, N.; Ahmed, U.; Thornalley, P.J.; Hager, K.; Fleischer, G.; Münch, G. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment. J. Neurochem., 2005, 92(2), 255-263.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02864.x] [PMID: 15663474]
[56]
Bonda, D.J.; Lee, H.; Blair, J.A.; Zhu, X.; Perry, G.; Smith, M.A. Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 2011, 3(3), 267-270.
[http://dx.doi.org/10.1039/c0mt00074d] [PMID: 21298161]
[57]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[58]
Niebrój-Dobosz, I.; Dziewulska, D.; Kwieciński, H. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS). Folia Neuropathol., 2004, 42(3), 151-156.
[PMID: 15535033]
[59]
Yeo, W.S.; Kim, Y.J.; Kabir, M.H.; Kang, J.W.; Kim, K.P.; Kim, K.P. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. Mass Spectrom. Rev., 2015, 34(2), 166-183.
[http://dx.doi.org/10.1002/mas.21429] [PMID: 24889964]
[60]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[61]
Mitsumoto, H.; Garofalo, D.C.; Santella, R.M.; Sorenson, E.J.; Oskarsson, B.; Fernandes, J.M., Jr; Andrews, H.; Hupf, J.; Gilmore, M.; Heitzman, D.; Bedlack, R.S.; Katz, J.S.; Barohn, R.J.; Kasarskis, E.J. lomen-Hoerth, C.; Mozaffar, T.; Nations, S.P.; Swenson, A.J.; Factor-Litvak, P. Plasma creatinine and oxidative stress biomarkers in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2020, 21(3-4), 263-272.
[http://dx.doi.org/10.1080/21678421.2020.1746810] [PMID: 32276554]
[62]
Cunha-Oliveira, T.; Montezinho, L.; Mendes, C.; Firuzi, O.; Saso, L.; Oliveira, P.J.; Silva, F.S.G. Oxidative stress in amyotrophic lateral sclerosis: Pathophysiology and opportunities for pharmacological intervention. Oxid. Med. Cell. Longev., 2020, 2020, 1-29.
[http://dx.doi.org/10.1155/2020/5021694] [PMID: 33274002]
[63]
Riancho, J.; Gonzalo, I.; Ruiz-Soto, M.; Berciano, J. Why do motor neurons degenerate? Actualisation in the pathogenesis of amyotrophic lateral sclerosis. Neurología (English Edition), 2019, 34(1), 27-37.
[http://dx.doi.org/10.1016/j.nrleng.2015.12.019] [PMID: 26853842]
[64]
Squadrone, S.; Brizio, P.; Abete, M.C.; Brusco, A. Trace elements profile in the blood of Huntington’ disease patients. J. Trace Elem. Med. Biol., 2020, 57, 18-20.
[http://dx.doi.org/10.1016/j.jtemb.2019.09.006] [PMID: 31546208]
[65]
Duran, R.; Barrero, F.J.; Morales, B.; Luna, J.D.; Ramirez, M.; Vives, F. Oxidative stress and plasma aminopeptidase activity in Huntington’s disease. J. Neural Transm. (Vienna), 2010, 117(3), 325-332.
[http://dx.doi.org/10.1007/s00702-009-0364-0] [PMID: 20094738]
[66]
Essa, M.M.; Moghadas, M.; Ba-Omar, T.; Walid Qoronfleh, M.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Ray, B.; Bhat, A.; Chidambaram, S.B.; Fernandes, A.J.; Song, B.J.; Akbar, M. Protective effects of antioxidants in Huntington’s disease: An extensive review. Neurotox. Res., 2019, 35(3), 739-774.
[http://dx.doi.org/10.1007/s12640-018-9989-9] [PMID: 30632085]
[67]
Butterfield, D.A.; Castegna, A.; Pocernich, C.B.; Drake, J.; Scapagnini, G.; Calabrese, V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem., 2002, 13(8), 444-461.
[http://dx.doi.org/10.1016/S0955-2863(02)00205-X] [PMID: 12165357]
[68]
Marí, M.; de Gregorio, E.; de Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial glutathione: Recent insights and role in disease. Antioxidants, 2020, 9(10), 909.
[http://dx.doi.org/10.3390/antiox9100909] [PMID: 32987701]
[69]
Barbero-Camps, E.; Fernández, A.; Martínez, L.; Fernández-Checa, J.C.; Colell, A. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum. Mol. Genet., 2013, 22(17), 3460-3476.
[http://dx.doi.org/10.1093/hmg/ddt201] [PMID: 23648430]
[70]
Lloret, A.; Esteve, D.; Monllor, P.; Cervera-Ferri, A.; Lloret, A. The effectiveness of vitamin E treatment in Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(4), 879.
[http://dx.doi.org/10.3390/ijms20040879] [PMID: 30781638]
[71]
Teixeira, J.P.; de Castro, A.A.; Soares, F.V.; da Cunha, E.F.F.; Ramalho, T.C. Future therapeutic perspectives into the alzheimer’s disease targeting the oxidative stress hypothesis. Molecules, 2019, 24(23), 4410.
[http://dx.doi.org/10.3390/molecules24234410] [PMID: 31816853]
[72]
Dong, Y.; Chen, X.; Liu, Y.; Shu, Y.; Chen, T.; Xu, L.; Li, M.; Guan, X. Do low‐serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta‐analysis of case‐control studies. Int. J. Geriatr. Psychiatry, 2018, 33(2), e257-e263.
[http://dx.doi.org/10.1002/gps.4780] [PMID: 28833475]
[73]
Cowan, C.M.; Sealey, M.A.; Mudher, A. Suppression of tau‐induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity. J. Neurochem., 2021, 157(3), 684-694.
[http://dx.doi.org/10.1111/jnc.15253] [PMID: 33251603]
[74]
Casati, M.; Boccardi, V.; Ferri, E.; Bertagnoli, L.; Bastiani, P.; Ciccone, S.; Mansi, M.; Scamosci, M.; Rossi, P.D.; Mecocci, P.; Arosio, B. Vitamin E and Alzheimer’s disease: The mediating role of cellular aging. Aging Clin. Exp. Res., 2020, 32(3), 459-464.
[http://dx.doi.org/10.1007/s40520-019-01209-3] [PMID: 31054115]
[75]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[76]
Tripathi, A.; Choubey, P.K.; Sharma, P.; Seth, A.; Saraf, P.; Shrivastava, S.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 95, 103506.
[http://dx.doi.org/10.1016/j.bioorg.2019.103506] [PMID: 31887472]
[77]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[78]
Pi, R.; Mao, X.; Chao, X.; Cheng, Z.; Liu, M.; Duan, X.; Ye, M.; Chen, X.; Mei, Z.; Liu, P.; Li, W.; Han, Y. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One, 2012, 7(2), e31921.
[http://dx.doi.org/10.1371/journal.pone.0031921] [PMID: 22384101]
[79]
Dhiman, P.; Malik, N.; Khatkar, A. Hybrid caffeic acid derivatives as monoamine oxidases inhibitors: synthesis, radical scavenging activity, molecular docking studies and in silico ADMET analysis. Chem. Cent. J., 2018, 12(1), 112.
[http://dx.doi.org/10.1186/s13065-018-0481-7] [PMID: 30413989]
[80]
Benchekroun, M.; Pachón-Angona, I.; Luzet, V.; Martin, H.; Oset-Gasque, M.J.; Marco-Contelles, J.; Ismaili, L. Synthesis, antioxidant and Aβ anti-aggregation properties of new ferulic, caffeic and lipoic acid derivatives obtained by the Ugi four-component reaction. Bioorg. Chem., 2019, 85, 221-228.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.029] [PMID: 30640071]
[81]
Baschiera, E.; Sorrentino, U.; Calderan, C.; Desbats, M.A.; Salviati, L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic. Biol. Med., 2021, 166, 277-286.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.039] [PMID: 33667628]
[82]
Seo, J.S.; Kim, T.K.; Leem, Y.H.; Lee, K.W.; Park, S.K.; Baek, I.S.; Kim, K.S. Im, G.J.; Lee, S.M.; Park, Y.H.; Han, P.L. SK-PC-B70M confers anti-oxidant activity and reduces Aβ levels in the brain of Tg2576 mice. Brain Res., 2009, 1261, 100-108.
[http://dx.doi.org/10.1016/j.brainres.2009.01.019] [PMID: 19401163]
[83]
Singh, S.K.; Srikrishna, S.; Castellani, R.J.; Perry, G. Antioxidants in the prevention and treatment of Alzheimer’s disease. In: Nutritional Antioxidant Therapies: Treatments and Perspectives; Springer: Cham, Switzerland, 2017; pp. 523-553.
[http://dx.doi.org/10.1007/978-3-319-67625-8_20]
[84]
Arbo, B.D.; André-Miral, C.; Nasre-Nasser, R.G.; Schimith, L.E.; Santos, M.G.; Costa-Silva, D.; Muccillo-Baisch, A.L.; Hort, M.A. Resveratrol derivatives as potential treatments for alzheimer’s and parkinson’s disease. Front. Aging Neurosci., 2020, 12, 103.
[http://dx.doi.org/10.3389/fnagi.2020.00103] [PMID: 32362821]
[85]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[86]
Duan, S.; Guan, X.; Lin, R.; Liu, X.; Yan, Y.; Lin, R.; Zhang, T.; Chen, X.; Huang, J.; Sun, X.; Li, Q.; Fang, S.; Xu, J.; Yao, Z.; Gu, H. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer’s disease. Neurobiol. Aging, 2015, 36(5), 1792-1807.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.002] [PMID: 25771396]
[87]
Liu, P.; Cui, L.; Liu, B.; Liu, W.; Hayashi, T.; Mizuno, K.; Hattori, S.; Ushiki-Kaku, Y.; Onodera, S.; Ikejima, T. Silibinin ameliorates STZ-induced impairment of memory and learning by up- regulating insulin signaling pathway and attenuating apoptosis. Physiol. Behav., 2020, 213, 112689.
[http://dx.doi.org/10.1016/j.physbeh.2019.112689] [PMID: 31669775]
[88]
Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L.; Hrelia, P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med. Chem., 2005, 48(2), 360-363.
[http://dx.doi.org/10.1021/jm049112h] [PMID: 15658850]
[89]
Wang, R.; Zhang, L.; Liao, R.; Li, Q.; Pi, R.; Yang, X. N2L, a novel lipoic acid-niacin dimer protects HT22 cells against β-amyloid peptide-induced damage through attenuating apoptosis. Metab. Brain Dis., 2019, 34(6), 1761-1770.
[http://dx.doi.org/10.1007/s11011-019-00482-5] [PMID: 31478183]
[90]
Pagoni, A.; Marinelli, L.; Di Stefano, A.; Ciulla, M.; Turkez, H.; Mardinoglu, A.; Vassiliou, S.; Cacciatore, I. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur. J. Med. Chem., 2020, 186, 111880.
[http://dx.doi.org/10.1016/j.ejmech.2019.111880] [PMID: 31753513]
[91]
Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[92]
Michalska, P.; Tenti, G.; Satriani, M.; Cores, A.; Ramos, M.T.; García, A.G.; Menéndez, J.C.; León, R. Aza‐CGP37157‐lipoic hybrids designed as novel Nrf2‐inducers and antioxidants exert neuroprotection against oxidative stress and show neuroinflammation inhibitory properties. Drug Dev. Res., 2020, 81(3), 283-294.
[http://dx.doi.org/10.1002/ddr.21618] [PMID: 31693218]
[93]
Uppakara, K.; Jamornwan, S.; Duan, L.; Yue, K.; Sunrat, C.; Dent, E.W.; Wan, S.; Saengsawang, W. Novel α-Lipoic Acid/3- n -Butylphthalide Conjugate enhances protective effects against oxidative stress and 6-OHDA induced neuronal damage. ACS Chem. Neurosci., 2020, 11(11), 1634-1642.
[http://dx.doi.org/10.1021/acschemneuro.0c00105] [PMID: 32374999]
[94]
Jia, W.; Su, Q.; Cheng, Q.; Peng, Q.; Qiao, A.; Luo, X.; Zhang, J.; Wang, Y. Neuroprotective effects of palmatine via the enhancement of antioxidant defense and small heat shock protein expression in Aβ-Transgenic Caenorhabditis elegans. Oxid. Med. Cell. Longev., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/9966223] [PMID: 34567416]
[95]
Tang, C.; Hong, J.; Hu, C.; Huang, C.; Gao, J.; Huang, J.; Wang, D.; Geng, Q.; Dong, Y. Palmatine protects against cerebral ischemia/reperfusion injury by activation of the AMPK/Nrf2 pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6660193] [PMID: 33777318]
[96]
Tripathi, P.N.; Srivastava, P.; Sharma, P.; Tripathi, M.K.; Seth, A.; Tripathi, A.; Rai, S.N.; Singh, S.P.; Shrivastava, S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem., 2019, 85, 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[97]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11(1), 24-37.
[http://dx.doi.org/10.2174/1874104501711010024] [PMID: 28567126]
[98]
Machhi, J.; Sinha, A.; Patel, P.; Kanhed, A.M.; Upadhyay, P.; Tripathi, A.; Parikh, Z.S.; Chruvattil, R.; Pillai, P.P.; Gupta, S.; Patel, K.; Giridhar, R.; Yadav, M.R. Neuroprotective potential of novel multi-targeted isoalloxazine derivatives in rodent models of Alzheimer’s disease through activation of canonical wnt/β-catenin signalling pathway. Neurotox. Res., 2016, 29(4), 495-513.
[http://dx.doi.org/10.1007/s12640-016-9598-4] [PMID: 26797524]
[99]
Miyake, Y.; Fukushima, W.; Tanaka, K.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; Sakae, N.; Fukuyama, H.; Hirota, Y.; Nagai, M. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case–control study in Japan. Eur. J. Neurol., 2011, 18(1), 106-113.
[http://dx.doi.org/10.1111/j.1468-1331.2010.03088.x] [PMID: 20491891]
[100]
de Rijk, M.C.; Breteler, M.M.B.; den Breeijen, J.H.; Launer, L.J.; Grobbee, D.E.; van der Meché, F.G.; Hofman, A. Dietary antioxidants and Parkinson disease. The Rotterdam study. Arch. Neurol., 1997, 54(6), 762-765.
[http://dx.doi.org/10.1001/archneur.1997.00550180070015] [PMID: 9193212]
[101]
Zhang, S.M.; Hernán, M.A.; Chen, H.; Spiegelman, D.; Willett, W.C.; Ascherio, A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology, 2002, 59(8), 1161-1169.
[http://dx.doi.org/10.1212/01.WNL.0000028688.75881.12] [PMID: 12391343]
[102]
Schirinzi, T.; Martella, G.; Imbriani, P.; Di Lazzaro, G.; Franco, D.; Colona, V.L.; Alwardat, M.; Salimei, P.S.; Mercuri, N.B.; Pierantozzi, M.; Pisani, A. Dietary Vitamin E as a protective factor for parkinson's disease: Clinical and experimental evidence. Front. Neurol., 2019, 10
[http://dx.doi.org/10.3389/fneur.2019.00148]
[103]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[104]
Krishnamoorthy, A.; Sevanan, M.; Mani, S.; Balu, M.; Balaji, S. P, R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci. Lett., 2019, 709, 134382.
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[105]
Nguyen, T.T.; Vuu, M.D.; Huynh, M.A.; Yamaguchi, M.; Tran, L.T.; Dang, T.P.T. Curcumin effectively rescued parkinson's disease-like phenotypes in a novel Drosophila melanogaster model with dUCH knockdown. Oxid Med Cell Longev., 2018, 2018, 2038267.
[http://dx.doi.org/10.1155/2018/2038267]
[106]
Ramkumar, M.; Rajasankar, S.; Swaminathan Johnson, W.M.; Prabu, K.; Venkatesh Gobi, V. Demethoxycurcumin ameliorates rotenone-induced toxicity in rats. Front. Biosci. (Elite Ed.), 2019, 11(1), 1-11.
[PMID: 30468633]
[107]
Zhang, L.; Yu, X.; Ji, M.; Liu, S.; Wu, X.; Wang, Y.; Liu, R. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct., 2018, 9(12), 6414-6426.
[http://dx.doi.org/10.1039/C8FO00964C] [PMID: 30462117]
[108]
Abolaji, A.O.; Adedara, A.O.; Adie, M.A.; Vicente-Crespo, M.; Farombi, E.O. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem. Biophys. Res. Commun., 2018, 503(2), 1042-1048.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.114] [PMID: 29935183]
[109]
Wang, H.; Dong, X.; Liu, Z.; Zhu, S.; Liu, H.; Fan, W.; Hu, Y.; Hu, T.; Yu, Y.; Li, Y.; Liu, T.; Xie, C.; Gao, Q.; Li, G.; Zhang, J.; Ding, Z.; Sun, J. Resveratrol suppresses rotenone-induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway. Anat. Rec. (Hoboken), 2018, 301(6), 1115-1125.
[http://dx.doi.org/10.1002/ar.23781] [PMID: 29350822]
[110]
Ardah, M.T.; Merghani, M.M.; Haque, M.E. Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem. Int., 2019, 128, 115-126.
[http://dx.doi.org/10.1016/j.neuint.2019.04.014] [PMID: 31028778]
[111]
Wang, Y.; Yu, X.; Zhang, P.; Ma, Y.; Wang, L.; Xu, H.; Sui, D. Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson’s disease. J. Pharmacol. Sci., 2018, 138(1), 31-37.
[http://dx.doi.org/10.1016/j.jphs.2018.08.008] [PMID: 30241783]
[112]
Motyl, J.; Przykaza, Ł.; Boguszewski, P.M.; Kosson, P.; Strosznajder, J.B. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology, 2018, 135, 139-150.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.023] [PMID: 29481916]
[113]
Bhurtel, S.; Katila, N.; Neupane, S.; Srivastav, S.; Park, P.H.; Choi, D.Y. Methylene blue protects dopaminergic neurons against MPTP‐induced neurotoxicity by upregulating brain‐derived neurotrophic factor. Ann. N. Y. Acad. Sci., 2018, 1431(1), 58-71.
[http://dx.doi.org/10.1111/nyas.13870] [PMID: 29882218]
[114]
Tapias, V.; McCoy, J.L.; Greenamyre, J.T. Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson’s disease. Redox Biol., 2019, 24, 101164.
[http://dx.doi.org/10.1016/j.redox.2019.101164] [PMID: 30925294]
[115]
Xu, L.L.; Wu, Y.F.; Yan, F.; Li, C.C.; Dai, Z.; You, Q.D.; Jiang, Z.Y.; Di, B. 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a novel Nrf2 activator targeting brain tissue, protects against MPTP-induced subacute Parkinson’s disease in mice by inhibiting the NLRP3 inflammasome and protects PC12 cells against oxidative stress. Free Radic. Biol. Med., 2019, 134, 288-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.003] [PMID: 30615919]
[116]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees Khan, A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6‐hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[117]
Zhang, Y.; Wu, Q.; Zhang, L.; Wang, Q.; Yang, Z.; Liu, J.; Feng, L. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol. Res., 2019, 150, 104538.
[http://dx.doi.org/10.1016/j.phrs.2019.104538] [PMID: 31707034]
[118]
dos Santos Nunes, R.G.; Pereira, P.S.; Elekofehinti, O.O.; Fidelis, K.R.; da Silva, C.S.; Ibrahim, M.; Barros, L.M.; da Cunha, F.A.B.; Lukong, K.E.; de Menezes, I.R.A.; Tsopmo, A.; Duarte, A.E.; Kamdem, J.P. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. Pestic. Biochem. Physiol., 2019, 157, 161-168.
[http://dx.doi.org/10.1016/j.pestbp.2019.03.017] [PMID: 31153464]
[119]
Zhou, T.; Zhu, M.; Liang, Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol. Med. Rep., 2018, 17(4), 4883-4888.
[http://dx.doi.org/10.3892/mmr.2018.8470] [PMID: 29363729]
[120]
Ebrahimi, S.S.; Oryan, S.; Izadpanah, E.; Hassanzadeh, K. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol. Lett., 2017, 276, 108-114.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.018] [PMID: 28526446]
[121]
Santamaría, A.; Salvatierra-Sánchez, R.; Vázquez-Román, B.; Santiago-López, D.; Villeda-Hernández, J.; Galván-Arzate, S.; Jiménez-Capdeville, M.E.; Ali, S.F. Protective effects of the antioxidant selenium on quinolinic acid‐induced neurotoxicity in rats: in vitro and in vivo studies. J. Neurochem., 2003, 86(2), 479-488.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01857.x] [PMID: 12871589]
[122]
Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem., 2015, 153, 1-12.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.09.003] [PMID: 26398431]
[123]
Lu, Z.; Marks, E.; Chen, J.; Moline, J.; Barrows, L.; Raisbeck, M.; Volitakis, I.; Cherny, R.A.; Chopra, V.; Bush, A.I.; Hersch, S.; Fox, J.H. Altered selenium status in Huntington’s disease: Neuroprotection by selenite in the N171-82Q mouse model. Neurobiol. Dis., 2014, 71, 34-42.
[http://dx.doi.org/10.1016/j.nbd.2014.06.022] [PMID: 25014023]
[124]
Castro, M.A.; Beltrán, F.A.; Brauchi, S.; Concha, I.I. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J. Neurochem., 2009, 110(2), 423-440.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06151.x] [PMID: 19457103]
[125]
Hussein, M.; Fathy, W.; Hassan, A.; Elkareem, R.A.; Marzouk, S.; Kamal, Y.S. Zinc deficiency correlates with severity of diabetic polyneuropathy. Brain Behav., 2021, 11(10), e2349.
[http://dx.doi.org/10.1002/brb3.2349] [PMID: 34521153]
[126]
Castro, M.A.; Pozo, M.; Cortés, C.; García, M.A.; Concha, I.I.; Nualart, F. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J. Neurochem., 2007, 102(3), 773-782.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04631.x] [PMID: 17630983]
[127]
Rebec, G.V.; Barton, S.J.; Marseilles, A.M.; Collins, K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport, 2003, 14(9), 1263-1265.
[http://dx.doi.org/10.1097/00001756-200307010-00015] [PMID: 12824772]
[128]
Stefani, G.P.; Nunes, R.B.; Dornelles, A.Z.; Alves, J.P.; Piva, M.O.; Domenico, M.D.; Rhoden, C.R.; Lago, P.D. Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats. J. Int. Soc. Sports Nutr., 2014, 11(1), 11.
[http://dx.doi.org/10.1186/1550-2783-11-11] [PMID: 24655435]
[129]
Andreassen, O.A.; Dedeoglu, A.; Ferrante, R.J.; Jenkins, B.G.; Ferrante, K.L.; Thomas, M.; Friedlich, A.; Browne, S.E.; Schilling, G.; Borchelt, D.R.; Hersch, S.M.; Ross, C.A.; Beal, M.F. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis., 2001, 8(3), 479-491.
[http://dx.doi.org/10.1006/nbdi.2001.0406] [PMID: 11447996]
[130]
Kumar, P.; Kumar, A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism. Food Chem. Toxicol., 2009, 47(10), 2522-2530.
[http://dx.doi.org/10.1016/j.fct.2009.07.011] [PMID: 19616597]
[131]
Jain, D.; Gangshettiwar, A. Combination of lycopene, quercetin and poloxamer188 alleviates anxiety and depression in 3-nitropropionic acid-induced Huntingtons disease in rats. J. Intercult. Ethnopharmacol., 2014, 3(4), 186-191.
[http://dx.doi.org/10.5455/jice.20140903012921] [PMID: 26401371]
[132]
Peterson, B.; Nguyen, H.St.St. John’s Wort. In: StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.
[133]
Wright, D.J.; Gray, L.J.; Finkelstein, D.I.; Crouch, P.J.; Pow, D.; Pang, T.Y.; Li, S.; Smith, Z.M.; Francis, P.S.; Renoir, T.; Hannan, A.J. N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Hum. Mol. Genet., 2016, 25(14), ddw144.
[http://dx.doi.org/10.1093/hmg/ddw144] [PMID: 27179791]
[134]
A randomised controlled trial, of n-acetyl cysteine (NAC), for premanifest huntingtin gene expansion carriers. 2022. Available from: https://checkorphan.org/clinicaltrial/a-randomised-controlled- trial-of-n-acetyl-cysteine-nac-for-premanifest-huntingtin-gene-expansion-carriers/
[135]
Rosenstock, T.R.; de Brito, O.M.; Lombardi, V.; Louros, S.; Ribeiro, M.; Almeida, S.; Ferreira, I.L.; Oliveira, C.R.; Rego, A.C. FK506 ameliorates cell death features in Huntington’s disease striatal cell models. Neurochem. Int., 2011, 59(5), 600-609.
[http://dx.doi.org/10.1016/j.neuint.2011.04.009] [PMID: 21703318]
[136]
Kumar, P.; Kumar, A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav. Brain Res., 2010, 206(1), 38-46.
[http://dx.doi.org/10.1016/j.bbr.2009.08.028] [PMID: 19716383]
[137]
Chabrier, P.E.; Auguet, M. Pharmacological properties of BN82451: A novel multitargeting neuroprotective agent. CNS Drug Rev., 2007, 13(3), 317-332.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00018.x] [PMID: 17894648]
[138]
Colle, D.; Santos, D.B.; Moreira, E.L.G.; Hartwig, J.M.; dos Santos, A.A.; Zimmermann, L.T.; Hort, M.A.; Farina, M. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS One, 2013, 8(6), e67658.
[http://dx.doi.org/10.1371/journal.pone.0067658] [PMID: 23799154]
[139]
de Paula Nascimento-Castro, C.; Wink, A.C.; da Fônseca, V.S.; Bianco, C.D.; Winkelmann-Duarte, E.C.; Farina, M.; Rodrigues, A.L.S.; Gil-Mohapel, J.; de Bem, A.F.; Brocardo, P.S. Antidepressant effects of probucol on early-symptomatic YAC128 transgenic mice for huntington’s disease. Neural Plast., 2018, 2018, 1-17.
[http://dx.doi.org/10.1155/2018/4056383] [PMID: 30186318]
[140]
Zoccolella, S.; Santamato, A.; Lamberti, P. Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr. Dis. Treat., 2009, 5, 577-595.
[http://dx.doi.org/10.2147/NDT.S7788] [PMID: 19966906]
[141]
Gurney, M.E.; Cutting, F.B.; Zhai, P.; Doble, A.; Taylor, C.P.; Andrus, P.K.; Hall, E.D. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol., 1996, 39(2), 147-157.
[http://dx.doi.org/10.1002/ana.410390203] [PMID: 8967745]
[142]
Michal Freedman, D.; Kuncl, R.W.; Weinstein, S.J.; Malila, N.; Virtamo, J.; Albanes, D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(4), 246-251.
[http://dx.doi.org/10.3109/21678421.2012.745570] [PMID: 23286756]
[143]
Wang, H.; O’Reilly, E.J.; Weisskopf, M.G.; Logroscino, G.; McCullough, M.L.; Schatzkin, A.; Kolonel, L.N.; Ascherio, A. Vitamin E intake and risk of amyotrophic lateral sclerosis: A pooled analysis of data from 5 prospective cohort studies. Am. J. Epidemiol., 2011, 173(6), 595-602.
[http://dx.doi.org/10.1093/aje/kwq416] [PMID: 21335424]
[144]
Do, T.Q.; Schultz, J.R.; Clarke, C.F. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7534-7539.
[http://dx.doi.org/10.1073/pnas.93.15.7534] [PMID: 8755509]
[145]
Sohmiya, M.; Tanaka, M.; Suzuki, Y.; Tanino, Y.; Okamoto, K.; Yamamoto, Y. An increase of oxidized coenzyme Q-10 occurs in the plasma of sporadic ALS patients. J. Neurol. Sci., 2005, 228(1), 49-53.
[http://dx.doi.org/10.1016/j.jns.2004.09.030] [PMID: 15607210]
[146]
Molina, J.A.; de Bustos, F.; Jiménez-Jiménez, F.J.; Gómez-Escalonilla, C.; García-Redondo, A.; Esteban, J.; Guerrero-Sola, A.; del Hoyo, P.; Martínez-Salio, A.; Ramírez-Ramos, C.; Ruiz Indurain, G.; Arenas, J. Serum levels of coenzyme Q 10 in patients with amyotrophic lateral sclerosis. J. Neural Transm. (Vienna), 2000, 107(8-9), 1021-1026.
[http://dx.doi.org/10.1007/s007020070050] [PMID: 11041280]
[147]
Neves Carvalho, A.; Firuzi, O.; Joao Gama, M.; van Horssen, J.; Saso, L. Oxidative stress and antioxidants in neurological diseases: is there still hope? Curr. Drug Targets, 2017, 18(6), 705-718.
[http://dx.doi.org/10.2174/1389450117666160401120514] [PMID: 27033198]
[148]
Bhatia, N.K.; Srivastava, A.; Katyal, N.; Jain, N.; Khan, M.A.I.; Kundu, B.; Deep, S. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 426-436.
[http://dx.doi.org/10.1016/j.bbapap.2015.01.014] [PMID: 25666897]
[149]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[150]
Rakotoarisoa, M.; Angelova, A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel), 2018, 5(4), 126.
[http://dx.doi.org/10.3390/medicines5040126] [PMID: 30477087]
[151]
Cudkowicz, M.; Bozik, M.E.; Ingersoll, E.W.; Miller, R.; Mitsumoto, H.; Shefner, J.; Moore, D.H.; Schoenfeld, D.; Mather, J.L.; Archibald, D.; Sullivan, M.; Amburgey, C.; Moritz, J.; Gribkoff, V.K. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat. Med., 2011, 17(12), 1652-1656.
[http://dx.doi.org/10.1038/nm.2579] [PMID: 22101764]
[152]
Ferrari-Toninelli, G.; Maccarinelli, G.; Uberti, D.; Buerger, E.; Memo, M. Mitochondria-targeted antioxidant effects of S(-) and R(+) pramipexole. BMC Pharmacol., 2010, 10(1), 2.
[http://dx.doi.org/10.1186/1471-2210-10-2] [PMID: 20137065]
[153]
Bozik, M.E.; Mather, J.L.; Kramer, W.G.; Gribkoff, V.K.; Ingersoll, E.W. Safety, tolerability, and pharmacokinetics of KNS-760704 (dexpramipexole) in healthy adult subjects. J. Clin. Pharmacol., 2011, 51(8), 1177-1185.
[http://dx.doi.org/10.1177/0091270010379412] [PMID: 20959524]
[154]
Rudnicki, S.A.; Berry, J.D.; Ingersoll, E.; Archibald, D.; Cudkowicz, M.E.; Kerr, D.A.; Dong, Y. Dexpramipexole effects on functional decline and survival in subjects with amyotrophic lateral sclerosis in a Phase II study: Subgroup analysis of demographic and clinical characteristics. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(1), 44-51.
[http://dx.doi.org/10.3109/17482968.2012.723723] [PMID: 22985432]
[155]
Zhang, X.; Zhou, W.; Zhang, Y. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant. Mil. Med. Res., 2018, 5(1), 30.
[http://dx.doi.org/10.1186/s40779-018-0176-3] [PMID: 30185231]
[156]
Crow, J.P.; Calingasan, N.Y.; Chen, J.; Hill, J.L.; Beal, M.F. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann. Neurol., 2005, 58(2), 258-265.
[http://dx.doi.org/10.1002/ana.20552] [PMID: 16049935]
[157]
Jackson, M.; Lladó, J.; Rothstein, J.D. Therapeutic developments in the treatment of amyotrophic lateral sclerosis. Expert Opin. Investig. Drugs, 2002, 11(10), 1343-1364.
[http://dx.doi.org/10.1517/13543784.11.10.1343] [PMID: 12387699]
[158]
Jaiswal, M.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med. Res. Rev., 2019, 39(2), 733-748.
[http://dx.doi.org/10.1002/med.21528] [PMID: 30101496]
[159]
Abe, K.; Itoyama, Y.; Sobue, G.; Tsuji, S.; Aoki, M.; Doyu, M.; Hamada, C.; Kondo, K.; Yoneoka, T.; Akimoto, M.; Yoshino, H. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Frontotemporal Degener., 2014, 15(7-8), 610-617.
[http://dx.doi.org/10.3109/21678421.2014.959024] [PMID: 25286015]
[160]
Takayasu, Y.; Nakaki, J.; Kawasaki, T.; Koda, K.; Ago, Y.; Baba, A.; Matsuda, T. Edaravone, a radical scavenger, inhibits mitochondrial permeability transition pore in rat brain. J. Pharmacol. Sci., 2007, 103(4), 434-437.
[http://dx.doi.org/10.1254/jphs.SC0070014] [PMID: 17409627]
[161]
Zhang, M.; Teng, C.H.; Wu, F.F.; Ge, L.Y.; Xiao, J.; Zhang, H.Y.; Chen, D.Q. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation. Exp. Ther. Med., 2019, 18(1), 467-474.
[http://dx.doi.org/10.3892/etm.2022.11394] [PMID: 31281440]
[162]
Xu, W.; Tan, L.; Wang, H.F.; Jiang, T.; Tan, M.S.; Tan, L.; Zhao, Q.F.; Li, J.Q.; Wang, J.; Yu, J.T. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2015, 86(12), jnnp-2015-310548.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[163]
Latourte, A.; Soumaré, A.; Bardin, T.; Perez-Ruiz, F.; Debette, S.; Richette, P. Uric acid and incident dementia over 12 years of follow-up: A population-based cohort study. Ann. Rheum. Dis., 2018, 77(3), 328-335.
[http://dx.doi.org/10.1136/annrheumdis-2016-210767] [PMID: 28754803]
[164]
Lu, N.; Dubreuil, M.; Zhang, Y.; Neogi, T.; Rai, S.K.; Ascherio, A.; Hernán, M.A.; Choi, H.K. Gout and the risk of Alzheimer’s disease: A population-based, BMI-matched cohort study. Ann. Rheum. Dis., 2016, 75(3), 547-551.
[http://dx.doi.org/10.1136/annrheumdis-2014-206917] [PMID: 25739830]
[165]
Lopes da Silva, S.; Vellas, B.; Elemans, S.; Luchsinger, J.; Kamphuis, P.; Yaffe, K.; Sijben, J.; Groenendijk, M.; Stijnen, T. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta‐analysis. Alzheimers Dement., 2014, 10(4), 485-502.
[http://dx.doi.org/10.1016/j.jalz.2013.05.1771] [PMID: 24144963]
[166]
Williams, D.M.; Hägg, S.; Pedersen, N.L. Circulating antioxidants and Alzheimer disease prevention: A Mendelian randomization study. Am. J. Clin. Nutr., 2019, 109(1), 90-98.
[http://dx.doi.org/10.1093/ajcn/nqy225] [PMID: 30596810]
[167]
Zhang, Q.; Li, Q.; Zhao, H.; Shu, M.; Luo, M.; Li, Y.; Ding, Y.; Shi, S.; Cheng, X.; Niu, Q. Neurodegenerative disease and antioxidant biomarkers: A bidirectional Mendelian randomization study. Front. Neurol., 2023, 14, 1158366.
[http://dx.doi.org/10.3389/fneur.2023.1158366] [PMID: 37034095]
[168]
Chew, E.Y.; Clemons, T.E.; Agrón, E.; Launer, L.J.; Grodstein, F.; Bernstein, P.S. Effect of Omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function. JAMA, 2015, 314(8), 791-801.
[http://dx.doi.org/10.1001/jama.2015.9677] [PMID: 26305649]
[169]
Luo, J.; le Cessie, S.; van Heemst, D.; Noordam, R. Diet-derived circulating antioxidants and risk of coronary heart disease. J. Am. Coll. Cardiol., 2021, 77(1), 45-54.
[http://dx.doi.org/10.1016/j.jacc.2020.10.048] [PMID: 33413940]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy